### Abstract

We examine the time reversal symmetry of quantum measurement sequences by introducing a forward and backward Janus sequence of measurements. If the forward sequence of measurements creates a sequence of quantum states in time, starting from an initial state and ending in a final state, then the backward sequence begins with the time-reversed final state, exactly retraces the intermediate states, and ends with the time-reversed initial state. We prove that such a sequence can always be constructed, showing that unless the measurements are ideal projections, it is impossible to tell if a given sequence of measurements is progressing forward or backward in time. A statistical arrow of time emerges only because typically the forward sequence is more probable than the backward sequence.

Publication

*AIP Conference Proceedings*

###### Associate Professor of Physics

Researches quantum information, computation, and foundations.