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Benchmarks of nonclassicality for qubit arrays
Mordecai Waegell1 and Justin Dressel 1,2

We present a set of practical benchmarks for N-qubit arrays that economically test the fidelity of achieving multi-qubit
nonclassicality. The benchmarks are measurable correlators similar to two-qubit Bell correlators, and are derived from a particular
set of geometric structures from the N-qubit Pauli group. These structures prove the Greenberger–Horne–Zeilinger (GHZ) theorem,
while the derived correlators witness genuine N-partite entanglement and establish a tight lower bound on the fidelity of particular
stabilizer state preparations. The correlators need only M ≤ N+ 1 distinct measurement settings, as opposed to the 22N− 1 settings
that would normally be required to tomographically verify their associated stabilizer states. We optimize the measurements of
these correlators for a physical array of qubits that can be nearest-neighbor-coupled using a circuit of controlled-Z gates with
constant gate depth to form N-qubit linear cluster states. We numerically simulate the provided circuits for a realistic scenario with
N= 3, …, 9 qubits, using ranges of T1 energy relaxation times, T2 dephasing times, and controlled-Z gate-fidelities consistent with
Google’s 9-qubit superconducting chip. The simulations verify the tightness of the fidelity bounds and witness nonclassicality for all
nine qubits, while also showing ample room for improvement in chip performance.

npj Quantum Information            (2019) 5:66 ; https://doi.org/10.1038/s41534-019-0181-8

INTRODUCTION
As hardware is developed to implement quantum circuits on
increasing numbers of qubits, it will be valuable to have
economical benchmarks of fully quantum behavior. From the
outset of quantum computing it has been clear that the
advantage of a quantum computer lies somewhere in its ability
to readily perform tasks that are physically challenging or
impossible for a classical system. Therefore, ideal hardware
benchmarks should certify the ability of the hardware to generate
such nonclassical behavior. Indeed, a wide variety of benchmark-
ing techniques have been developed recently,1,2 including gate-
fidelity benchmarks using randomized gate sequences that avoid
the state-preparation and measurement errors, and state-
preparation benchmarks that certify particular states while
avoiding the exponential scaling of state tomography.
Despite these recent achievements, quantifying the specific

nonclassical resources that lead to quantum computational
advantage has remained an elusive goal.3 Several earlier proposals
for suitable measures like entanglement,4–7 Bell-nonlocality,8–13 or
quantum discord and its variations,14–16 proved to be insufficient
on their own due to the discovery of algorithmic counter-
examples.17–21 Recent advances suggest a strong connection
between quantum advantage and contextuality,22–26 which is a
general structural feature of quantum mechanics that subsumes
nonlocality. The most pragmatic metric of nonclassical behavior in
quantum devices, however, has been the violation of two-qubit
Bell inequalities, or similar entanglement witnesses that can apply
to few-qubit subsets of a multi-qubit device.27

In this article, we provide a set of practical hardware bench-
marks that naturally generalize two-qubit Bell inequality tests to N
qubits, based on the Greenberger–Horne–Zeilinger (GHZ) theo-
rem. As with Bell inequalities, our nonclassicality benchmarks use
the experimental violation of a classical bound to quantify the
nonclassical behavior of the circuit. Beyond quantifying

nonclassicality via a bound-violation, these benchmarks also
provide tight lower bounds on the fidelities with which particular
stabilizer subspaces have been prepared, and thus witness
genuine N-qubit entanglement for all states that lie within the
targeted subspaces. These benchmarks are optimized for testing
controllable qubit arrays with nearest-neighbor coupling. As such,
we provide efficient circuits for preparing cluster states that
maximally violate these benchmarks with controlled-Z entangling
gates, using a constant gate depth of 4 (up to hardware-specific
decompositions of the controlled-Z gate28–33). Though our
benchmarks efficiently verify genuine N-qubit entanglement using
cluster states, many of the benchmarks may be applied to other
stabilizer states and we expect similar benchmarks to exist for all
stabilizer states.
The benchmarks we present here generalize earlier work that

was experimentally tested with N= 3, 4 photons,34 where they
were compared to previously proposed state-dependent methods
for efficiently verifying the fidelity of particular entangled N-qubit
preparations.35,36 These prior methods have already been used to
verify multi-qubit entanglement in state-of-the-art experiments
with 12 qubits37 and 18 qubits,38 since the exponential scaling
required for traditional state tomography is increasingly prohibi-
tive. Notably, for large N our GHZ-based benchmarks produce a
tighter preparation-fidelity bound than these existing methods
and similarly produce entanglement witnesses with better scaling.

RESULTS
Nonclassicality benchmarks
Our benchmarks consist of measurable correlators that are
compared to derived upper bounds; violation of these bounds
characterizes nonclassicality. Each such benchmark corresponds to
a specific prepare-and-measure circuit on N-qubits with M ≤ N+ 1
different measurement settings. The M observables form a
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structure called an ID (also called an identity product39), which is a
set of mutually commuting N-qubit Pauli operators whose overall
product is the N-qubit identity, up to a sign. We express an ID as
an M × N table of single-qubit Pauli operators and the identity {Z,
X, Y, I}, labeled Oij with i= 1, …, M and j= 1, …, N. We also define
the shortened label Oi ¼ �N

j¼1Oij to indicate the N-qubit obser-
vable obtained as the product of the ith row of an ID. We omit
tensor product symbols for compactness.
To obtain the Bell inequality for each ID,34 we choose a

particular eigenspace Π represented by a projector of rank 2N−M

+1, which is specified by the set of N-qubit Pauli observables {Oi}
that form the M rows of the ID (see Figs 1 and 2), and a specific
choice of their respective eigenvalues {λi}. We then define the
correlator observable for this chosen eigenspace,

α ¼
XM
i¼1

λi Oi ; (1)

such that its expectation value in a state ρ has an upper bound of
βQM=M, saturated by the chosen eigenspace ρ= Π

hαi ¼
XM
i¼1

λiTrðρOiÞ � βQM ¼ M: (2)

For example, we could prepare the joint eigenstate of the ID of
Fig. 1a, with negative eigenvalue λ1=−1 for the three-qubit Pauli
observable O1= YXY, and positive eigenvalues λ2= λ3= λ4=+1
for the remaining observables O2= YYZ, O3= ZXZ, and O4= ZYY.
Then, 〈α〉= Tr(Πα)= 4, since each term in the sum becomes +1.

In the spirit of Bell,9,10 if one tries to explain the observed
correlation by choosing a complete set of local hidden variables
vZj, vXj, vYj∈ {+1, −1} that predict the outcomes of the single-qubit
Pauli measurements, then at least one of the terms in the
correlator sum becomes −1, resulting in a smaller upper bound,

hαi � βLHVT ¼ M� 2: (3)

Experimental violation of this bound thus indicates nonclassicality
in the form of a violation of local realism. Though the locality
loophole is always open for neighboring qubits on a chip, this
violation is still a useful witness for nonclassical states prepared by
the chip, much like for Bell inequalities or Bell–Leggett–Garg
inequalities.40 The derivation of this bound is reviewed in the
“Methods” section.
As an independent result, maximizing the expectation value of

the correlator over all biseparable quantum states in the N-qubit
Hilbert space produces the upper bound,

hαi � βbisep ¼ M� 2; (4)

which happens to coincide with the bound for local hidden
variable theories. Experimental violation of the bound thus also
witnesses genuine N-partite entanglement. In the “Methods”
section, we provide the proof that the joint eigenspaces of the IDs
in this article are maximally entangled, as well as the derivation of
this bound.
In light of the convenient fact that βbisep= βLHVT, we define the

nonclassicality benchmark score for a given physical N-qubit device

Fig. 1 Minimal benchmark IDs for N= 3, …, 9 qubits. Each table in a–g has M rows of N observables Oij, with i= 1, …, M and j= 1, …, N. The
product of each row defines Oi ¼ �N

j¼1Oij . Eigenvalues λi of Oi are also shown in each table, chosen to correspond to the state prepared by the
circuit of Fig. 3 for the corresponding N, which lies in the specific eigenspace stabilized by the ID. Combining the rows of each ID with the
appropriate eigenvalue defines a correlator observable α ¼Pi λiOi , from which we obtain the experimental benchmark score B ¼
ðhαiexp �Mþ 2Þ=2 that witnesses nonlocal N-partite entanglement when 0<B ≤ 1, as well as the lower bound F � FID ¼ ðB þ 1Þ=2 on the
fidelity F for the state preparation to lie within the indicated eigenspace of the ID
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as the experimentally determined value,

B ¼ hαiexp �Mþ 2

2
; (5)

such that B � 0 fails to witness either entanglement or the
violation of local realism, while 0<B � 1 witnesses nonlocal N-
partite-entangled states. The nonclassicality benchmark score thus
serves as a metric of uniquely quantum behavior, with B ¼ 1
indicating maximum nonclassicality that saturates the correlator
bound. Each N-qubit ID provides a benchmark corresponding to a
distinct nonclassical eigenspace of an N-qubit physical device, and
thus the hierarchy of IDs presented in Fig. 1 provides a
corresponding hierarchy of benchmarks.

Lower bounding the fidelity
The correlator also serves to bound the fidelity from below,34

F � FID ¼ hαiexp �Mþ 4

4
¼ B þ 1

2
; (6)

where F= Tr(ρexpΠ)∈ [0, 1] is the fidelity that the experimentally
prepared state ρexp lies within the eigenspace Π stabilized by the
chosen ID. We provide a general derivation of this bound in the
“Methods” section. Importantly, in the limit 〈α〉exp→ βQM=M, we
have FID→ 1, and thus as the fidelity of the preparation is
improved, this lower bound obviates the need for full tomography
of these preparations.

Taken together, the inequalities of Eqs. (3), (4) and (6) provide a
practical and efficient characterization of the prepared N-qubit
state, as well as a robust benchmark of its nonclassical behavior,
using only M ≤ N+ 1 measurement settings. We present minimal
benchmark IDs in Fig. 1 for N= 3, …, 9, and detail minimal IDs up
to N= 33 qubits in Supplementary Figs 1 through 5. These
minimal IDs saturate the conjectured bound N ≤ (M− 2)(M− 1)/2.
We also present a family of maximal benchmark IDs in Fig. 2 for all
N ≥ 10 that saturate the bound M− 1 ≤ N.

Benchmark circuits and simulation
The IDs in this article have been specially chosen so that the
prepare-and-measure circuit for each measurement setting
requires a gate depth of 4 on any array of N physical qubits with
only nearest-neighbor controlled-Z couplings, making them a
scalable and uniform set of benchmarks for implementations of
this type. Figure 3 shows the circuits for N= 4, 5, from which the
generalization to all N should be straightforward. In general, each
circuit prepares an N-qubit linear cluster state, which is contained
within the maximally entangled subspace of the corresponding ID.
In order to evaluate the usefulness of these benchmarks in real-

world physical implementations, we simulated the performance of
these circuits for each of the IDs in Fig. 1. We simulated each
circuit over a range of T1 energy relaxation times, T2 dephasing
times, and angular jitter for the controlled-Z gate rotations, using
the ranges given in Figs 4 and 5. We also considered the effect of

(a) (b)
Fig. 2 Maximal benchmark IDs for (a) all even N ≥ 10 and (b) all odd N ≥ 11. These IDs can be extended in increments of two qubits and two
observables by adding tiles as shown, and filling all other spaces with ‘I’s. The N= 10 and N= 11 are the cases of a, b, respectively, with zero
tiles added. We can see from the asymmetric shape of the tiles that the added qubits must become entangled with the existing ones because
the two-qubit observables in the added columns do not mutually commute. See the Supplementary Notes and Supplementary Fig. 6 for a
proof that these IDs belong to the stabilizer group of the linear cluster state for all N
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initialization and readout error for each qubit. The ranges of values
were chosen to match the reported values of the 9-qubit Google
chip,31,32 with the experimental values roughly in the center of
each simulated range. We ran one version of the simulation using
a nominal initialization error for each qubit of Pe= 2%, and
another version where we used the observed initialization errors
for each of the nine qubits on the Google chip. Final readout error
has been neglected as correctable for ensemble statistics. Selected
plots from the simulations are shown in Fig. 4, while scatter plots
of the lower fidelity bound, FID, are shown in Fig. 5 for the full
ranges of simulated values. Note that in order to minimize the
effect of the two worst qubits on the chip (boldface values in Figs
4 and 5), we always used the last N qubits on the chip to form our
N-qubit IDs in the simulation. See the “Methods” section for
additional details about how the numerical simulations were
performed.
Judging by our simulated data shown in Figs 4 and 5, we expect

the nine-qubit Google chip to be able to violate the classicality
bounds for all nine qubits. We can see clearly that the qubit
initialization error is the dominant source of error as we try to
move to larger N. This shows that our benchmarking scheme is
immediately relevant, since it appears that similar hardware
fidelity would only violate the bound for one or two more qubits
—but certainly not all 72 on the Bristlecone chip41—once suitable
IDs have been found beyond the nine presented here.

DISCUSSION
The IDs and implementation circuits presented in this article are
good benchmark tests for any physical implementation of qubits
in a nearest-neighbor-connected array. They work naturally on a
chip with more connectivity than this as well. While our
simulations targeted a particular recent chip implementation for
concreteness, this does not constrain the general usefulness of
this protocol for other multi-qubit systems.
Although some other families of IDs with the same properties as

those in Figs 1 and 2 are known,39,42 the minimal IDs, with the
largest possible value of N for a given M, are not known in general
(see the Supplementary Discussion and Supplementary Figs 1
through 5 for the best known cases). Because of their geometric
nature, enumerating all of the representative IDs for given values
of N and M is a highly nontrivial problem, related to solving the
graph isomorphism problem on N ×M colored vertices, and it is
thus limited by computational resources. Furthermore, not every
ID can be constructed using only nearest-neighbor couplings in
linear circuits as in Fig. 3. The increased connectivity of more

modern chips, like the Bristlecone chip from Google, should allow
the use of more general IDs, although the circuit depth will likely
increase by one or two gates.
Each of the IDs presented here also gives rise to a complete

proof of the Kochen–Specker (KS) theorem for contextuality,22,43,44

which can be implemented for any initial state with a few
alternative circuits for the different measurement contexts. In
general, IDs are the natural building blocks of proofs of the KS
theorem in the N-qubit Pauli group. This is a slightly more
complicated setup, which could inspire different contextuality
based benchmarks in future work.
Finally, maximally entangled IDs with M < N+ 1 give rise to

maximally entangled eigenspaces, each of dimension 2N−M+1,
which generalize the codespaces of error-correcting codes,45,46

and L= N−M+ 1 is the number of logical qubits (where N is the
number of physical qubits). All N-qubit-stabilizer-based error-
correcting codes (including the toric code47) belong to the family
of IDs, and while all IDs of this type are error-detecting codes, they
cannot all be used to diagnose the syndrome of an error in order
to correct it. Many of the well-known error-correcting codes
generate an ID which proves the GHZ theorem, and all can be
used as entanglement witnesses in the manner of this article.48

Nevertheless, these more general maximally entangled subspaces
may be of significant interest for other applications in quantum
information processing, which warrants further investigation. One
straightforward application for these subspaces is to perform
benchmarks that measure the physical qubits as described in this
paper, while simultaneously benchmarking the performance of
the logical qubits in some additional way. The two tests may be
performed simultaneously because any general logical L-qubit
state can be prepared for each benchmark, although the circuit is
likely to be longer and more complex than Fig. 3, and the
performance will be commensurately worse. It is remarkable to
note that if the conjectured bound N ≤ (M− 2)(M− 1)/2 can
be saturated, then the number of logical qubits is bounded by L ≤
((M− 2)(M− 1)/2−M+ 1, and thus the ratio L/N→ 1 in the
limit M→∞.

METHODS
Proving the GHZ theorem
All of the IDs in Fig. 1 have sign −1, and for each qubit j, the number of
entries Oij= Z in the ID is even, as is the number of entries with Oij= X and
with Oij= Y. These properties indicate that these IDs give rise to proofs of
the GHZ theorem,11 which is a logical version of Bell’s nonlocality
theorem,9,10 without any inequalities. To see this, suppose that a joint
eigenstate (i.e., any state in a joint eigenspace) of these observables is

Fig. 3 Illustrative circuit diagrams for preparing the states for IDs in Fig. 1, with a corresponding to N= 4 in Fig. 1b and b corresponding to
N= 5 in Fig. 1c. These two examples generalize to N-qubits, and produce linear cluster states. The local measurement settings for each
observable Oij in the ID are implemented by the unitary operations Uij, assuming detectors that naturally measure the Z basis. This circuit
allows the M different settings of an ID to be implemented with different Uij for different observables and qubits. For example, in the "five-
qubit ID of Fig. 1c the first setting is ZYYZI, meaning that for the first and fourth qubits U11= U14= I, for the second and third qubits U12= U13=
eiπX/4, and the fifth qubit is ignored
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prepared. This eigenstate has M eigenvalues λi corresponding to the M

observables, and
QM

i¼1 λi ¼ �1, since the product of these M observables is
−I⊗N. Suppose that each of the N qubits are now mutually space-like
separated, and each is subjected to random local Pauli measurements, and
label their outcomes λij, when all N local measurement settings happen to
correspond to observable i of the ID. The entanglement correlations that
are obeyed by this state are

QN
j¼1 λij ¼ λi . Putting these relations together

we have
QM

i¼1

QN
j¼1 λij ¼ �1. Now, in order for a local hidden variable

theory (LHVT) to explain these entanglement correlations, each qubit j
must carry local hidden variables vZj, vXj, vYj∈ {+1, −1} which predict the
outcomes λij, and are pre-arranged to satisfy the entanglement constraints.
However, for such hidden variables we would have

QM
i¼1

QN
j¼1 λij ¼

QN
j¼1 v

nj
Zj v

mj

Xj v
lj
Yj ¼ þ1, since nj, mj, and lj are all even for

the IDs of this article, and thus is is impossible to choose local hidden
variables which can satisfy the entanglement correlations of this state. This
logical proof without inequalities can be converted into a Bell inequality
for use as a benchmark of N-qubit nonlocality, as shown in the main text,
by noting that for any complete assignment of local hidden variables vZj,
vXj, vYj∈ {+1, −1} to the ID, at least one of the observables has the wrong
eigenvalue.
In general, proving the GHZ theorem does not prove that nonlocal

correlations exist between more than just a single pair of qubits among the
N,49–52 nor does it generally witness genuine N-qubit entanglement. In
contrast, the benchmark IDs we present in this article prove the GHZ
theorem and are constructed to be N-partite entanglement witnesses,53,54
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Fig. 4 Nonclassicality benchmark scores (B), for selected simulations. The nonideality parameter ranges were T1∈ [5, 50] μs energy relaxation
times, T2∈ [1, 19] μs dephasing times, and w∈ [0.05, 0.5] rad of angular jitter widths for ZZ90 decompositions of controlled-Z (CZ) gates. We
used a single-qubit gate time of Δt= 25 ns, and a two-qubit controlled-Z gate time of Δt= 45 ns, which are conservative estimates for the
reported gate times. In plots e, f, the curves for qubit numbers N= 3,…, 9 are ordered starting from the top curve. In plots b, c, the N= 5 lines
are below the N= 6 lines, and the N= 7 lines are below the N= 8 lines, due to the poor performance of chip qubits 5 and 7 (boldface values).
a–c Simulated data using Google’s 9-qubit-chip values31,32: {T1}= {18.6, 28.1, 22.0, 19.1, 41.1, 21.3, 39.2, 24.7, 26.3} μs and {Pe}= {1.8, 1.1, 1.7,
1.3, 4.8, 0.7, 6.7, 0.4, 1.5}%. d–f Simulated data for Pe= 2% initialization error, with parameter ranges centered on mean chip values. a, d B vs.
N. Ideal curves have T2= T1=∞ and w= 0. Median curves approximate the chip, with shading indicating the range of simulated values. b, e B
vs. T2, fixing median chip values of w and T1. c B vs. w, fixing the median chip value of T2. f B vs. T1, fixing the median chip values of T2 and w
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such that their corresponding Bell inequalities can only be violated by
genuinely N-qubit-entangled states. To go further than the results we
present here and prove nonlocal correlations exist between every pair of
qubits among the N, one must violate the corresponding Svetlichny
inequalities49,55 instead, but with the cost that the number of required
measurement settings grows exponentially with N.49

Bounding the fidelity
An N-qubit ID with M observables {Oi} has a complete set of eigenspaces
{Πk} satisfying

P
k Πk ¼ I, each of which can be identified by a unique set

of distinct eigenvalues {λik} of {Oi}. Only M− 1 of the observables in an ID
are independent, and if M− 1 < N the eigenspaces Πk are degenerate, and
each contains 2N−M+1 mutually orthogonal vectors |κjk〉 which share the
eigenvalue λik, with j= 1, …, 2N−M+1, such that {|κjk〉} is a complete
orthonormal eigenbasis of the ID. Each of the 2M−1 eigenspaces Πk

corresponds to a unique correlator αk ¼
PM

i¼1 λikOi . Each experimentally
obtained quantity 〈αk〉 enables us to put a lower bound on the fidelity that
an experimentally prepared pure state |ψ〉 lies within the eigenspace Πk.

34

With no loss of generality, we will henceforth use correlator α1 and the
target eigenspace Π1. We begin by expanding |ψ〉 in this eigenbasis as

jψi ¼
X2N�Mþ1

j¼1

aj jκj1i þ
XM�1

k¼2

bjk jκjki
" #

; (7)

such that
P
j

jaj j2 þ
P2M�1

k¼2
jbjk j2

 !
¼ 1.

Since the expansion is in an eigenbasis of α1, we find

hα1iexp ¼ hψjα1jψi

¼ P2N�Mþ1

j¼1
jaj j2hκj1jα1jκj1i þ

P2M�1

k¼2
jbjk j2hκjk jα1jκjki

" #
:

(8)

Note that hκj1jα1jκj1i ¼
PM

k¼1 λ
2
k ¼ M, since all eigenvalues of |κ1〉 match

those in the correlator α1 by construction, and thus square to 1. However,
any other |κjk〉 does not lie within Π1, so is characterized by eigenvalues
distinct from those characterizing Π1. Moreover, since the product of all
eigenvalues for the observables of a given ID is fixed for any eigenstate,
only even numbers of eigenvalues can differ from those characterizing Π1,
which necessarily causes at least two terms of 〈κjk|α1|κjk〉 to become −1,
resulting in an upper bound of 〈κjk|α1|κjk〉 ≤M− 4 for those eigenstates.
Using these two observations we obtain,

hα1iexp �
X2N�Mþ1

j¼1

jaj j2Mþ
X2M�1

k¼2

jbjk j2ðM� 4Þ
" #

¼ 4F þM� 4; (9)

where F ¼Pj jaj j2, and we have used
P

j ðjaj j2 þ
P2M�1

k¼2 jbjk j2Þ ¼ 1. We
can rewrite this relation as

F � hψjΠ1jψi �
hα1iexp �Mþ 4

4
� FID: (10)

Noting that the left hand side of this equation is the fidelity F for the

preparation |ψ〉 to lie within the eigenspace Π1, the right hand side FID
gives a lower bound F ≥ FID for the fidelity. For IDs with M= N+ 1, the
target subspace Π1 contains only one eigenvector, so the fidelity F is also a
state preparation fidelity for the particular target eigenstate |κ1〉. For IDs
withM < N+ 1, the target subspace Π1 is degenerate, so the fidelity F is the
fidelity for |ψ〉 to lie within that subspace.
Next we generalize the above derivation to the case of mixed states. For

a general convex combination of m pure states,

ρ ¼
Xm
j¼1

cl jψlihψl j; (11)

where
P

cl ¼ 1, we can expand each |ψl〉 using appropriate eigenbases of
the ID as in Eq. (7) and follow the same arguments to obtain

hα1iexp �
Xm
l¼1

clð4Fl þM� 4Þ; (12)

where Fl≡ 〈ψl|Π1|ψl〉. We can rewrite this as

F � TrðρΠ1Þ ¼
Xm
j¼1

clFl �
hα1iexp �Mþ 4

4
� FID: (13)

As in the pure state case, the left-hand side is the fidelity F for the mixed
state ρ to lie within the target subspace Π1, while the same expression for
the right-hand side FID places a lower bound on this fidelity.

Witnessing genuine N-partite entanglement
An N-qubit ID provides an entanglement witness if it is maximally
entangled.39,56 Entanglement is usually discussed in reference to the
separability of states. However, there is a way to reason about the
entanglement of a set of observables directly without reference to states.
We define a maximally entangled set of N-qubit observables as one with
the property that there exists no bipartition of the N qubits into subsets of
R and N− R, such that all of the observables in each subset �k2½1;R� Oik
mutually commute. It follows from this definition that the joint eigenstates
of this set are maximally entangled N-qubit stabilizer states.
To see this, consider that every stabilizer state (space) of N qubits has a

stabilizer group of b= 2g mutually commuting Pauli observables {Si} and
corresponding eigenvalues {λi}, and its density operator can be written as

ρ ¼ 1
d

Xb
i¼1

λiSi ; (14)

where g is the number of independent generators in the set, and d= 2N is
the dimension of the Hilbert space. Note that if g < N, then ρ projects onto
a subspace of rank r= 2N−g > 1, and that g=M− 1 for a minimal ID, which
is just a specific subset of one or more complete stabilizer groups. If a
stabilizer state is the tensor product of two smaller stabilizer states on
subsystems A and B, it follows that its density operator can be written as

ρAB ¼
1
dA
XbA
i¼1

λAi S
A
i

 !
� 1

dB
XbB
j¼1

λBj S
B
j

 !
¼ 1

dAB
XbAB
k¼1

λABk SABk : (15)

For the bipartition of the system into A and B, all of the stabilizer operators

0.2 0.4 0.6 0.8 1

Fidelity

0.2

0.4

0.6

0.8

1

F ID

(a) (b) (c)

Fig. 5 Scatterplots of the fidelity lower bound FID vs. true fidelity F for all simulated data. The lower bound is tight, thus as F→ 1 so too does
FID. All plots contain data for the nonideality ranges: T2∈ [1, 19] μs dephasing times, and w∈ [0.05, 0.5] rad angular jitter widths for CZ gates.
a Chip values {T1}= {18.6, 28.1, 22.0, 19.1, 41.1, 21.3, 39.2, 24.7, 26.3} μs energy relaxation times, and {Pe}= {1.8, 1.1, 1.7, 1.3, 4.8, 0.7, 6.7, 0.4,
1.5}% initialization error. b Pe= 2% initialization error, with range T1∈ [5, 50] μs. c Same ranges as the center plot, but with Pe= 0 to show the
asymptotic approach FID→ F as F→ 1
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SAi ¼ �k2A Oik mutually commute by definition. It follows that one can find
such a mutually commuting bipartition for any separable state, and
therefore if no such bipartition exists, then the set of observables is
maximally entangled. All of the IDs presented in this article are maximally
entangled in this way, which results in a witness inequality with the same
bound as the Bell inequality.
All states within a maximally entangled eigenspace of an ID are

maximally entangled, meaning that for all of them, the maximum squared-
Schmid-coefficient across all bipartitions is 1/2. For such an eigenstate |ψ〉,
a standard entanglement witness is W ¼ 1=2� jψihψj, and an experi-
mental measurement of hWi< 0 is a witness of genuine N-partite
entanglement.54 Noting that a superposition state a|ψ〉+ b|ψ⊥〉 can only
violate this bound for F= |a|2 > 1/2, we obtain FID ≤ F ≤ 1/2 for all
biseparable states. Plugging this into FID= (〈α〉exp−M+ 4)/4 yields
〈α〉bisep ≤M− 2, which is Eq. (4).

Numerical simulation details
In the simulation, the state is first degraded by initialization error. That is,
ideally the N qubits are prepared in an initial ground state �N

i¼1j0i.
However, each qubit has an error probability PðiÞe of being initially excited,
which produces a mixed initial bit state

ð1� PðiÞe Þj0ih0j þ PðiÞe j1ih1j ¼ ð1� 2PðiÞe Þj0ih0j þ PðiÞe I, and thus a degraded

initial state ρ ¼ �n
i¼1½ð1� 2PðiÞe Þj0ih0j þ PðiÞe I� with ground state fidelityQn

i¼1 ð1� 2PðiÞe Þ. The final readout error for an ensemble average can be
corrected if the readout misidentification probabilities Pie are known, and
thus we have neglected the role of the readout error.
Each gate in Fig. 3 is then applied to the initial state ρ. For the Hadamard

gate, it is sufficient to use a Y90 rotation, exp(−iYπ/4). We decompose the
controlled-Z gate into an implementable ZZ90 entangling gate and single-
qubit corrections: exp(iπ/4)[exp(iZπ/4)⊗ exp(iZπ/4)]exp(−iZZπ/4). We
degraded each gate by T1 energy relaxation and T2 dephasing processes
for the corresponding gate times Δt. For the energy relaxation time T1, the
first-order corrections for each individual qubit are accumulated and then
applied to ρ. For each qubit Δρi ¼ ðayi ρai � 1

2 fρ; ayi aigÞΔt=T i1, where ai is
the lowering operator of the ith qubit tensored with identity for the other
qubits, and ρ ! ρþPN

i Δρi . This linear-order Lindblad-form update is
sufficient, since Δt=T i1 � 1. For the dephasing time T2, we directly
construct the matrix

D ¼ 1 e�Δt=T2

e�Δt=T2 1

 !�N

; (16)

for efficiency and apply gate dephasing using element-wise multiplication
(MATLAB syntax.*), as ρ→ ρ.* D.
For simulating gate infidelity, we assume that the single-qubit gate

fidelities are high enough for their errors to be neglected, and so simulate
only a range of fidelities for the two-qubit controlled-Z gates. As a crude
model for infidelity of a controlled-Z gate, we add a random angular jitter
δφ only to the ZZ rotation step, exp[−iZZ(π/2+ δφ)/2], and average over
the effect of this jitter using a raised cosine distribution with a width w, dP
(δφ)= d(δφ)[1+ cos(πδφ/w)]/(2w), where δφ∈ [−w, w] has compact
angular support. This yields the averaged state update,

ρ ! R
e�iζ iðπ=2þδφÞ=2ρeiζ i ðπ=2þδφÞ=2dPðδφÞ

¼ 1
2 ρþ ζ iρζ i þ iðζ iρ� ρζ iÞ sinw

w � sinw
2ðwþπÞ � sinw

2ðw�πÞ
� �h i

;
(17)

where ζi is the tensor product of Pauli Z for the two qubits the controlled-Z
is acting on, and identity for all of the other qubits. The limit as w→ 0
restores the unperturbed gate. This crude error model includes only one
possible physical mechanism of infidelity for the controlled-Z gate, but
gives an indication of the gate sensitivity to imprecise angular control.
Since the initialization error dominates the infidelity, the effect of the
angular jitter is small.
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