
SUPPLEMENTAL INFORMATION

Bell and Leggett-Garg Inequalities

The CHSH correlator, designed by Clauser, Horne, Shimony, and Holt[1] as a refinement of

the Bell inequality[2], provides a quantitative bound on classical hidden variable theories using

correlated measurements between two spatially separated qubits. The correlator combines four

different experimental configurations because it can be difficult to tell the difference between po-

tentially classical (un-entangled) qubits and an entangled state in only one basis. With supercon-

ducting qubits, the measurement basis for each qubit is set using qubit rotations to map the desired

state onto the ground (|0〉) and excited (|1〉) states of the system. For measurement rotations a

(qubit 1) and b (qubit 2), shown in Fig. 1(a), the correlation amplitude is given by

E(a, b) = P (00)− P (10)− P (01) + P (11), (1)

where P(00) is the probability both qubits are in the ground state. Given this equation we can see

that both the Bell state |Φ+〉 = (|00〉+ |11〉)/
√

2 and the prepared state |00〉 will have a correlation

amplitude of 1 if a = b = 0. The difference only becomes clear when the detector angle of one

qubit is rotated relative to the other. The behavior of E(a, b) vs detector rotation, described here

as θ = a− b, is shown in Fig. 1(b) for both the classical and quantum case. If the two objects can

be described separately, then E is only a linearly dependent on θ. If the two objects are entangled,

then E is has a sinusoidal dependence on θ with the maximum difference occurring at θ = π/4.

To initially characterize the system we conducted a traditional CHSH experiment using the

central Bell qubits (β1,2). The relative measurement angles for each qubit were held fixed such

that a′ = a + π/2 and b′ = b + π/2. We then varied θ = a − b from 0 to π, and measured each

individual correlator as well as the sum given by

CHSH = E(a, b) + E(a′, b) + E(a, b′)− E(a′, b′). (2)

For any two classical states measured at these angles, we should see a linear dependence of E(θ)

and a bound on the the CHSH correlator of |CHSH| ≤ 2. Alternately, if the two qubits are in

a maximally entangled Bell state, we should see sinusoidal behavior for E(θ) and a maximum

CHSH value of 2
√

2. The data, shown in Fig. 1(c), display the expected sinusoidal dependence

for each individual term, with a maximum CHSH amplitude near θ = π/4. While this data shows

a robust violation of the classical bound, it fails to reach the theoretical maxium bound of 2
√

2.
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Figure 1. Entanglement and the CHSH corralator. (a) Schematic of a typical CHSH experiment. Two qubits

are prepared in one of the four possible Bell states and measurements are conducted at various measurement

angles a, b, a′ = a + π/2, and b′ = b + π/2. (b) Dependence of correlation amplitude (Eq. 1) on detector

angle difference θ = a − b. The difference between quantum and classical correlation is maximized at

θ = π/4. (c) Measurement of CHSH correlator using the central Bell qubits prepared in a |φ+〉 Bell

state, displaying the sinusoidal dependence on the relative measurement angle θ. This experiment avoids

common sampling loopholes with high detector efficiency, but is subject to the locality loophole due to the

small spatial separation of adjacent superconducting qubits on a chip.

The maximum CHSH amplitude of ∼ 2.5 we see here is due to experimental imperfections which

will be discussed later. This CHSH experiment provides the framework for the BLGI, as well as a

benchmark for the maxium violation we should expect at the weakest measurement angles.

A complementary test of quantum mechanics is the LGI, which is similar to a Bell inequality

but involves measurements separated in time rather than in space. Classical theories of measure-

ment assume that the system is always in a definite state, and that an ideal measurement will not

change the state of the system. In contrast, if one were to measure a quantum state in an orthogonal

measurement basis, the act of measurement would project that object onto an eigenstate of the new

basis. To distinguish one kind of system from the other, measurements are conducted in different

bases at different times. For measurements conducted at times t1 < t2 < t3, we can construct

correlators analogous to Eq. 1 but for different measurements of the same qubit,

E(ti, tj) = P (00)− P (10)− P (01) + P (11). (3)

The inequality was originally composed of three distinct experiments. In the first experiment, the

system is measured projectively at time t1, followed by a final projective measurement at time t3.

A second experiment is then carried out where an intermediate measurement in a different basis is
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conducted at time t2 instead of time t3. The third experiment consists of only the measurements at

times t2 and t3. The LGI is then given by

−3 ≤ E(t1, t2) + E(t2, t3)− E(t1, t3) ≤ 1 (4)

whereE(t1, t3) is the experiment in which no measurement is performed at time t2. Further details

for LGIs can be found in the review article by Emary et al. [3].

The weak measurement techniques discussed in the main text were created to avoid the pos-

sibility of a “clumsy” measurement loophole [4]. When sequential measurements are performed

on the same system, it is impossible to ensure that LGI violations are not due to overly invasive

measurements perturbing the system in an unknown way. To minimize the effect of measurement,

most LGIs replace the measurement at time t1 with preparation of a known state, and the mea-

surement at time t2 with a null [5] or weak [6, 7] measurement. These weak measurements [6, 7]

minimize back action on the system, while still extracting enough information to identify its state.

Using this technique, all the statistics of the LGI can be measured by conducting all three “mea-

surements” in a single experimental configuration. To construct the Bell-Leggett-Garg inequality

we combined a traditional CHSH experiment with this weak measurement technique. This allows

us to measure all four terms of the CHSH correlator simultaneously in a single experiment.

BLGI Algorithm Assumptions and Loopholes

The fundamental assumptions of the hybrid Bell-Leggett-Garg inequality are those of local

realism, which are familiar from the Bell inequalities:

(i) If an object has several distinguishable physical states λ, then at any given time it occupies

only one of them.

(ii) A measurement performed on one object of a spatially-separated pair cannot disturb the

second object.

(iii) Measured results are determined causally by prior events.

Note that only assumption (ii) differs from the notion of macrorealism used in Leggett-Garg

inequalities: it is weakened here to permit local invasiveness for sequential measurements in time

made on the same object, while still forbidding spatially remote measurements from influencing
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each other. Note that the assumed physical state λ may be related to the quantum state, or may be

a collection of more refined (but unspecified) hidden variables.

To these core assumptions we must append one more to permit noisy (i.e., realistic) detectors:

(iv) Unbiased noisy detectors produce results that are correlated with the true object state λ on

average.

This assumption can be understood as follows. The object state λ ideally determines each measur-

able property A(λ), but a physical detector (and environment) that interacts with the system will

also have a distinct physical state ξ that may fluctuate noisily between realizations (e.g., from the

coupling procedure). In such a case the detector will report a correspondingly fluctuating signal

α(ξ) according to some response probability PA(ξ|λ) for obtaining the detector state ξ given each

definite system state λ. For any sensible detector, these response probabilities will be fixed by

the systematic and repeatable coupling procedure (such as our ancilla measurement circuit). To

calibrate such a detector, we must then assume that averaging over many realizations of the detec-

tor noise will faithfully reflect information about each prepared system state λ (even if that state

ultimately changes for subsequent measurements due to the coupling):

∑
ξ α(ξ)PA(ξ|λ) = A(λ). (5)

Importantly, this equality formally states only what is usually assumed for an unbiased laboratory

detector: that one can recover a meaningful system value A(λ) by averaging away any detector

noise.

Now consider the Bell-Leggett-Garg correlation. A correlated pair of objects with the joint

state λ is sampled from an ensemble with the distribution P (λ). (In our experiment, we prepare

two qubits in a Bell state.) At a later time each object (k = 1, 2) is coupled to a detector (an

ancilla qubit) that outputs a noisy signal αk calibrated to measure the bounded property Ak(λ) ∈

[−1, 1] on average (the Z operator for each Bell qubit). The noisy signal αk generally has an

expanded range of values that can lie outside the range [−1, 1] (in our case αk ≈ ±1/ sinφ);

however, for each λ the realizations of the output signal will average to the correct bounded value

by assumption (iv). (We verify this assumption with the ancilla calibration measurements using

definite preparations of 0 or 1 on the Bell qubits.) Finally, each object is measured with a second

detector that outputs a signal bk for a similarly bounded property Bk(ζ) ∈ [−1, 1] (we read out

the qubits directly to obtain bk = ±1). From these four measured numbers, we then compute the
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CHSH-like correlator as a single number for each preparation

C = −α1α2 − α1b2 + b1α2 − b1b2. (6)

The expanded ranges of the noisy signals αk generally produce a similarly expanded range for

the correlator C for each preparation. Nevertheless, averaging C over many realizations of the

detector noise ξAk
and ξBk

and system states λ will produce

〈C〉 =
∑

λ

∑
ξA1

,ξB1
ξA2

,ξB2

C P (ξA1 , ξB1|λ)P (ξA2 , ξB2 |λ)P (λ),

=
∑

λ

[
− A1(λ)A2(λ)− A1(λ)B′2(λ) +B′1(λ)A2(λ)−B′1(λ)B′2(λ)

]
P (λ), (7)

with Ak(λ) =
∑

ξAk
,ξBk

αk(ξAk
)P (ξAk

, ξBk
|λ) and B′k(λ) =

∑
ξAk

,ξBk
bk(ξBk

)P (ξAk
, ξBk
|λ),

since postulate (ii) causes the joint distribution of the detector states to factor: P (ξA1 , ξB1 , ξA2 , ξB2|λ) =

P (ξA1 , ξB1 |λ)P (ξA2 , ξB2|λ) in the same way as for a Bell inequality. From the postulates (i), (iii),

and (iv), the averages Ak(λ) and B′k(λ) are then bounded to the range [−1, 1]. Therefore, for each

λ the sum of the bounded averages in Eq. (7) must itself be bounded by [−2, 2]. Averaging this

bounded result over P (λ) produces the expected BLGI

−2 ≤ 〈C〉 ≤ 2. (8)

Importantly, the joint probability P (ξAk
, ξBk
|λ) = P (ξAk

|λ)P (ξBk
|λ, ξAk

) for each qubit k ad-

mits the dependence of the B′k measurement on an invasive Ak measurement that can alter the

physical state λ. Despite any randomization of the results bk(ξBk
) caused by such local invasive-

ness, however, the perturbed averages B′k(λ) must still lie in the range [−1, 1] since each bk = ±1

by construction. This allowance for locally invasive measurements in the BLGI is what avoids the

clumsiness loophole [4] of the usual LGI. The fact that the entire correlator C is computed for

every realization in the same experimental configuration is what avoids any variant of the disjoint

sampling loophole [8] for the usual Bell and LGIs (such as from systemic bugs in the preparation

software).

There are, however, two notable ways that our derivation of the BLGI in Eq. (8) could fail.

First, the assumptions (i–iii) of local realism could fail, as in a standard Bell inequality. This is

certainly possible in our case since the Bell qubits are neighbors on the same superconducting chip.

However, arranging for a locally realist model that accounts for the needed disturbance effects for

the neighboring Bell qubits, the neighboring Bell-ancilla qubits, each remote pair of Bell-ancilla
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qubits, and the remote ancilla-ancilla qubits simultaneously is substantially more difficult (and

therefore much less likely) than arranging for such disturbance in the usual Bell test on just two

neighboring qubits. Moreover, our experiment verifies the detailed functional dependence of the

quantum predictions as the weak measurement angle φ is varied, which further constrains any

purported locally realist explanation. Thus our tested BLGI significantly tightens the locality

loophole [9] compared to the usual Bell test performed on the same chip.

Second, the noisy detector assumption (iv) could fail due to hidden preparation noise ξP not

included in the state λ that systematically affects the detector output in both arms in a correlated

way. In this case, the detector response would become noise-dependent PA(ξ|λ) → PA(ξ|λ, ξP )

such that the calibration of Eq. (5) will be satisfied only after additionally averaging over ξP .

Such correlated noise would prevent the detector distributions from factoring for each λ in Eq. (7),

which formally spoils the inequality. However, in our experiment such a systematic bias due

to correlated noise has been extensively checked during the characterization of the chip and the

measurement calibration by deliberately preparing a variety of uncorrelated distributions P (λ)

(i.e., different qubit states) and looking for spurious cross-correlations of the various qubit readout

signals that would be expected in the presence of such hidden preparation noise. Hence, the

failure of assumption (iv) additionally requires an unlikely preparation-conspiracy where every

calibration check that has been done is somehow immune to the hidden detector-noise correlations.

Weak Measurement Calibration

As discussed in the main text the ancilla readout is imperfectly correlated to the Bell qubit’s

state. When measuring in the Z basis, 〈Z〉α = sin(φ)〈Z〉β , shown in Fig. 2 (a) along with the

ideal curves ± sin(φ). To calibrate this weak measurement we must first relate the measurement

angle φ to microwave drive power, by fitting to a measurement of |1〉 state probability vs. π-pulse

amplitude. The most straight forward calibration would then be to divide 〈Z〉α by sin(φ) shown

in the blue curves in Fig. 2 (b), but this method causes drift in the mean at the smallest angles.

This simple calibration fails because the raw data curves shown in Fig. 2 (a) converge to a value

slightly below zero. This means that for the weakest measurements, the simple angle calibration

will under-correct a |1〉 state measurement and over-correct a |0〉 state measurement. This over-

correction of the |0〉 state is problematic, since calibrated values for 〈Z〉α not bounded by ±1 will

possibly violate the inequality incorrectly. To prevent this, we instead use a data based calibration
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Figure 2. (a) Raw measurement of 〈Z〉 vs. measurement strength φ for both α1 and α2 along with an ideal

curve of ± sin(φ). Due to decoherence, measurement error, and possible calibration error the data does not

perfectly follow the ± sin(φ) curves and converges to a value slightly below 0 at the weakest measurement

strength. (b) |0〉 state calibrations done using both the 1/ sin(φ) method (blue) and the point by point

calibration (green). In the 1/ sin(φ) calibration the mean of the |0〉 state measurement drifts above 1 at the

weakest measurement angles, while the mean follows 1 for the point by point case.

for each ancilla using the average of the |0〉 state measurement curve. This has the advantage of

bounding the mean of the calibrated result by ±1, at the expense of accentuating the drift in the

mean of the |1〉 state measurement towards 0. The results of this |0〉 state calibration are shown in

the green curves in Fig. 2 (b).

To apply this calibration to the correlator terms, we must first express them in terms of the

measurement operator 〈Z〉. In a superconducting system the state rotations are used to map the

desired measurement basis onto the ground (|0〉) and excited (|1〉). For the ancilla measurement

this is equivalent to mapping onto the Z measurement axis. Given probability P(1) of measuring

the excited (|1〉) state, 〈Z〉 = 1−2P (1). After mapping state probabilities onto the Z measurement

axis we can express the correlator as E(α, β) = 〈Z〉α〈Z〉β . Expressed in this way we can see that

for calibration factor cal(φ) ≈ 1/ sin(φ), Ecal(α, β) = E(α, β) ∗ cal(φ). Extending this to the

BLGI we calibrate each term depending on the ancilla qubit being measured such thatE(α1, β2)→

E(α1, β2)∗cal(φ1), E(β1, α2)→ E(β1, α2)∗cal(φ2), E(α1, α2)→ E(α1, α2)∗cal(φ1)∗cal(φ2),

and E(β1, β2) remains unchanged.
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Error Analysis and Pulse Sequence Optimization

While the algorithm and weak measurement scheme are simple in design, dependence on cor-

relations between multiple qubits makes 〈C〉 sensitive to multiple error mechanisms. As all four

qubits were operated away from the flux insensitive point they were more susceptible to dephasing

effects. The Xmon qubits used in this experiment were extensively characterized in Ref. [10],

with a T2 Ramsey decay of order 2 − 3µs at the idle point. When Characterizing the phase er-

ror per gate with randomized benchmarking, we find an error of roughly 0.25 percent per gate.

This corresponds to a T2echo of over 10µs. The amplitude of 〈C〉 vs. dephasing error per qubit is

shown in Fig. 3(a). The violation amplitude is relatively robust to this error, and can sustain error

rates of up to 30 percent while still exhibiting non-classical correlations. The second major error

mechanism was reduced measurement visibility coming from T1 energy decay or spurious |1〉 state

population. The effect on 〈C〉 vs. single qubit measurement visibility is shown in Fig 3(b). The

correlation amplitude is more sensitive to this reduced measurement visibility and is significantly

degraded at even 90 percent. In both cases, the presence of errors not only lowers the maximum vi-
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Figure 3. Effect of error mechanisms on BLGI correlations. (a) Amplitude of 〈C〉 vs. measurement strength

for various single qubit dephasing error rates. The single qubit dephasing error rate can be thought of as

roughly T2/(gate time) in the simplest case, but can be improved through the addition of echo pulses. (b)

Amplitude of 〈C〉 vs. measurement strength for various single qubit measurement visibility values. The

system shows a greater sensitivity to this error mechanism and cannot tolerate a visibility much below 90

percent.
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Figure 4. (above) Full pulse sequence of the BLGI algorithm, including spin echo pulses on the Bell qubits

to reduce dephasing. The weak measurements were carried out simultaneously to further streamline the

algorithm. (below) Frequency diagram of the 4 qubits showing their placement in frequency space the pulse

sequence, in particular the various detunings during the adiabatic CZ gates.

olation possible but the highest measurement strength at which a violation first occurs. As weaker

measurement angles require finer calibration and provide noisier data, it is preferable to achieve a

violation at the largest measurement strength possible.

Given the sensitivity of 〈C〉 to various decoherence mechanisms it was important to reduce the

BLGI pulse sequence time as much as possible for higher coherence. This is most notable during

the weak measurement portion when we carry out simultaneous adiabatic CZ gates[11] between

both ancilla-Bell pairs. Lastly, we introduced spin echo pulses in the middle of the algorithm which

cancel out dephasing during the pulse sequence while simply transforming the original |Ψ+〉 Bell

state to a |Ψ−〉. To maximize measurement fidelity, we used a wide bandwidth parametric amplifier

[12], to ensure a high signal to noise ratio and shorter readout time. A separate measurement at

the beginning of the pulse sequence was used to herald [13] the qubits to the ground state, but this

was a small (∼6 percent) effect. Lastly, we implemented numeric optimization of the adiabatic

CZ gates using the ORBIT protocol [14] to fine tune parameters for the final data set. The full

Pulse sequence and frequency placement of the qubits during the algorithm is shown in Fig. 4.

During the numeric optimization of the pulse sequence, single qubit phases can be adjusted
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Figure 5. Graph showing both experimental data (points) and theoretical predictions (lines) for the four

BLGI terms vs. measurement strength φ. The data set was taken by averaging together 200 hundred traces

in which each point was measured 3000 times for a total of 600,000 iterations per point. The error bars

represent 10 standard deviations of the mean to demonstrate the scaling the ancilla measurement noise vs.

measurement strength. Distinct differences in the behavior arise from experimental imperfections and their

depedence on different qubit correlations. In particular the difference between E(β1, β2) and E(α1, β2) or

E(β1, α2) highlights the dependence of entanglement collapse on the measurement strength of both ancilla

qubits.

slightly to increase correlations, leading to a larger violation. This is equivalent to changing the

final rotation angle of the detectors slightly (∼ 3 degrees). The nature of the BLGI makes it

immune to such rotations as loss of correlations in one correlator is naturally made up for in

another. additionally, the initial detector rotation b was chosen based on the maximum of the

original CHSH measurements. Due to differences in qubit coherence this does not necessarily

occur at π/4, but at a slightly smaller angle. The individual BLGI correlator terms measured

in this experiment along with theory curves accounting for these realistic rotations are plotted

in Fig. 5. The behavior of each individual term depends on the type of qubits being correlated.

The term E(α1, α2) holds roughly constant, close to the expected value of −1/
√

2. E(α1, β2)

and E(β1, α2) start close to zero, and converge to around ±0.5. The behavior of E(β1, β2) best

matches expectations. It begins at 0 for strong ancilla measurement and converges near 1/
√

2 at
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perfectly weak measurement, following a slightly s-shaped curve.

Sample fabrication and characterization

Devices are fabricated identically to Ref. [11], and extensive calibration was documented in

Ref. [10].

Device parameters

The device parameters are listed in table I. Note that the coupling rate g is defined such that

strength of the level splitting on resonance (swap rate) is 2g (Ref. [15]).
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Table I. Parameters for the device when running the BLGI algorithm. f are frequencies. η is qubit nonlin-

earity. g is coupling strength. κ is resonator leakage rate.

Q0 Q1 Q2 Q3

Qubit frequencies and coupling strengths

fmax10 (GHz) 5.30 5.93 5.39 5.90

η/2π (GHz) -0.230 -0.216 -0.229 -0.214

f idle10 (GHz) 4.53 5.42 4.67 5.55

fres (GHz) 6.748 6.626 6.778 6.658

gres/2π (GHz) 0.110 0.128 0.111 0.109

gqubit/2π (MHz) 13.8 14.1

gqubit/2π (MHz) 14.5

1/κres (ns) 675 69 555 30

Readout (RO) parameters

RO error 0.015 0.004 0.067 0.007

Thermal |1〉 pop. 0.013 0.007 0.028 0.01

RO pulse length (ns) 1000 300 1000 300

RO demodulation length (ns) 1000 300 1000 300

Qubit lifetime at idling point

T1 (µs) 26.3 24.7 39.2 21.3
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