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A B S T R A C T

In their original framework weak values must be measured by weak measurements that are minimally disturbing,
meaning that the coupling between an investigated quantum system and a measurement device has no influence
on the evolution of the system. However, under certain circumstances this weakness of the interaction is not
necessary. In that case weak values can still be exactly determined from the statistics of the outcomes of arbitrary-
strength generalized measurements. Here, we report an experimental procedure for neutron matter-waves that
extends the notion of generalized eigenvalues for the neutron’s path system to allow the exact determination of
weak values using both strong and weak interactions. Experimental evidence is given that strong interactions
outperform weak ones both for precision and accuracy.

1. Introduction

The weak value of an operator Â was introduced by Aharonov, Albert
and Vaidman (AAV) in Ref. [1] as “a new kind of value for a quantum
variable”. The weak value was operationally obtained via a specific
procedure, referred to as a post-selected weak measurement, where the
probed quantum system is left minimally disturbed and pursues its evo-
lution from an initial state ∣𝜓 i⟩ towards a selected final state ∣𝜓 f⟩, with-
out projecting the system into its eigenstates in between. If this proce-
dure is applied, the result of averaging the weak measurements of the
operator Â is not the usual expectation value but rather the weak value

⟨Â⟩w = ⟨𝜓f|Â|𝜓i⟩⟨𝜓f|𝜓i⟩ . (1)

Both real and imaginary parts of this generally complex expression
can be obtained separately by changing how the probe is measured. The
weak value of an operator Â may differ significantly from an average
of the eigenvalues of an associated operator since weak values may lie
far outside the eigenvalue range of the operator. The weak value has
evolved from a theoretical peculiarity to a powerful experimental tool
[2]: it can be applied to high precision metrology by amplifying detec-
tor signals [3–8], or as a new method for the estimation of quantum
states [9–14]. In addition, weak values and weak measurement have
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been productively applied to quantum paradoxes such as the three-box
problem [15], Hardy’s paradox [16–18] and the quantum Cheshire cat
[19–21].

In their original proposal in Ref. [1] AVV developed the weak value
formalism in a non-relativistic quantum framework for massive quan-
tum systems applying a modified Stern-Gerlach experiment with spin-
1
2 particles. However, due to the small coherence volume of massive
particle beams, an experimental demonstration of a weak value’s mea-
surement in a simple massive-particle system proved to be difficult, as
a result of which the first experimental determination of a weak value
was realized in a purely optical setup [28]. Significant improvements
in the experimental methods and techniques of neutron interferome-
try [29] made it possible to fully determine the weak value of a neu-
tron’s spin operator with high precision [30]. Neutron interferometry
has been established as a powerful experimental tool to investigate the
foundations of quantum mechanics [31–35].

2. Theoretical framework of general-strength measurements

As introduced, the AAV formula from Eq. (1) only applies to pure ini-
tial and final states with intermediate weak measurements. So naturally
the following question arises: “Is the weak value expression still opera-
tionally meaningful for impure boundary conditions and finite strength
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measurements?” To address this question rigorously, the concept of the
contextual values of an observable were introduced in Refs. [22–25] as
a generalization of its eigenvalues that take into account the details of
the specific measurement procedure. There it was shown that even for
non-projective measurements one may still assign meaningful values to
imperfectly correlated detector outcomes—that is, averaging carefully
chosen values can recover the correct expectation value as an ensem-
ble average, but the needed values are generally not eigenvalues. This
equivalence under the averaging process can be expressed more for-
mally as an operator identity, Â = ∑

aa∣a⟩⟨a∣ = ∑
k𝛼kÊk, where a are

the eigenvalues of Â with eigenstates ∣a⟩, and 𝛼k are contextual val-
ues for Â with respect to a particular positive operator-valued mea-
sure (POVM) {Êk}, satisfying

∑
kÊk = 1̂. As a clarifying note, the term

“context” was originally intended to mean the measurement context,
i.e. the specific POVM being used to probe the observable. However,
the term has caused some confusion with the unrelated concept of con-
textuality as it applies to hidden variable models of the quantum theory
[26,27]. We thus disambiguate the two here by referring to the values
𝛼k as generalized eigenvalues of the observable Â.

Using this concept of generalized eigenvalues, it was rigorously
shown how conditioned averages of generalized measurements con-
verge to the weak value as a stable limit point when the measurements
become sufficiently weak [22–24]. For purity-preserving measurements
such that the POVM elements Êk = M̂†

kM̂k factor into single Kraus opera-
tors M̂k, a general conditioned average of generalized measurements in
between an initial mixed state 𝜌i and a final generalized measurement
POVM F̂f will have the form

∑
k
𝛼kP(k|f ) = Re[Tr(F̂f Â𝜌)] +

∑
k
𝛼kTr(F̂fk[𝜌i])

Tr(F̂f𝜌) + Tr(F̂f[𝜌i])
, (2)

where the perturbation away from a generalized weak value expression⟨Â⟩w = Re[Tr(F̂f Â𝜌i)∕Tr(F̂f𝜌i)] is determined by Lindblad decoherence

[𝜌i] =
∑

kk[𝜌i] with k[𝜌i] = −
(

M̂k[M̂
†
k , 𝜌i] − [M̂k, 𝜌i]M̂

†
k

)
∕2. In the

case of a weak measurement, M̂k ≈ pk1̂, the commutators in the Lind-
blad disturbance approximately vanish, leaving the weak value expres-
sion as the conditioned average [24]. Evidently from this analysis, it is
clear that any situation in which the Lindblad disturbance can be made
irrelevant in the numerator will be able to recover a generalized weak
value as an operational average, up to renormalization. It thus becomes
interesting to consider special cases where stronger measurements with
less statistical uncertainty can recover the weak value expression with-
out any approximations.

Here, we present an interferometric experiment in which the neu-
tron’s path degree of freedom is characterized by both weak measure-
ments and stronger generalized measurements that can recover the
same weak value expression. Moreover, we provide a detailed analy-
sis of how to obtain not only the real part of a weak value, but also
the imaginary part and the modulus directly using experimentally col-
lected intensities at any interaction strength. This result extends the
idea of generalized eigenvalues by canceling the measurement pertur-
bation through a strategic renormalization procedure. The observable
of interest is the Pauli operator 𝜎p

z associated with the path of the neu-
tron, and the spin has the role of the meter system or measurement
device, or pointer. The weak values obtained through weak measure-
ments, denoted ⟨𝜎p

z ⟩w, are then compared to the weak values obtained
through stronger generalized measurements, denoted ⟨𝜎p

z ⟩g. The preci-
sion as well as the accuracy of both experimental approaches for obtain-
ing the same quantity are then discussed in detail.

3. Experimental procedure

The measurement scheme starts with the initial state of the
composite system, consisting of both the system that shall be

measured—path—and the probe or meter system—spin

||Ψi⟩ = ||Pi⟩ ||Si⟩ = 1√
2

(||Pz; +⟩ + ||Pz; −⟩) ||Sx; +⟩ , (3)

where ||Pi⟩ is the initial path and ||Si⟩ the initial spin state. ||Pz; +⟩ and||Pz; −⟩ are the eigenstates of path I and II respectively, with the corre-
sponding probability amplitude 1√

2
accounting for a equally weighted

coherent superposition of the two beam paths. ||Sx; +⟩ denotes a spin
state that is aligned along the positive x-axis. A general form for a pres-
elected path state after the first plate of the interferometer (50:50 beam
splitter), which is depicted in Fig. 1, is given by

||Pi⟩ = 1√
2

(||Pz; +⟩ + ei𝜒 ||Pz; −⟩) , (4)

where 𝜒 represents the relative phase between the path eigenstates.
Eq. (3) describes a completely separable state, since there is no cou-

pling between the spin and path. In the next step a coupling by a uni-
tary evolution accounting for path-dependent spin rotations is induced.
Strictly speaking: the spin is rotated by a certain angle 𝛼 about the z-axis
in the xy-plane with clockwise (positive) rotation in path I and counter
clockwise (negative) rotation in path II. The corresponding interaction
Hamiltonian is expressed as

Ĥint = − ⃖⃗𝜇 · ⃖⃗B Π̂p
z+ + ⃖⃗𝜇 · ⃖⃗B Π̂p

z− = −𝜇B±𝛼
z 𝜎s

z𝜎
p
z (5)

where Π̂p
z± are the projection operators on the path eigenstates ||Pz; +⟩

and ||Pz; −⟩, ⃖⃗𝜇 = 𝜇 ⃖⃗𝜎s, where 𝜇 is the neutron’s magnetic moment and
⃖⃗B =

(
0,0,B±𝛼

z
)

an applied magnetic field. The Pauli operators for spin
and path are given by 𝜎s

z = ||Sz; +⟩ ⟨Sz; +|| − ||Sz; −⟩ ⟨Sz; −|| and 𝜎
p
z =||Pz; +⟩ ⟨Pz; +|| − ||Pz; −⟩ ⟨Pz; −||, respectively. The action of Ĥint on the

composite system ∣Ψi⟩ is described by its time evolution denoted as

|Ψ′⟩ = e
−i
ℏ

∫ Ĥintdt ||Ψi⟩ = e
−i𝛼𝜎s

z𝜎
p
z

2 ||Ψi⟩ , (6)

where 𝛼 is the angle of rotation given by 𝛼 = −2𝜇Bz𝜏
ℏ

, with 𝜏 being the
time the neutron’s is exposed to the magnetic field region. Note that 𝛼
is the relevant parameter accounting for the interaction strength of the
measurement and 𝜎s

z is the generator of spin rotations about the z-axis.
In the standard weak measurement procedure [1], as applied in

our previous experiment [30], the evolution operator exp
(

−i𝛼𝜎s
z𝜎

p
z

2

)
is series expanded around 𝛼. By neglecting higher orders of 𝛼 conse-
quently an approximation for 𝛼 ≪ 1 was made there. In contrast, here,

however the analytical relation exp
(

−i𝛼𝜎s
z𝜎

p
z

2

)
= cos 𝛼

2 − i𝜎s
z𝜎

p
z sin 𝛼

2 is

used [13]—hence no approximation is made in present work. Conse-
quently the calculations hold for arbitrary interaction strengths, i.e.,
arbitrary rotation angles 𝛼. The analytic form of the state after the inter-
action is given by|||Ψ′⟩ = cos 𝛼

2
||Pi⟩ ||Sx; +⟩ − i𝜎p

z sin 𝛼
2
||Pi⟩ ||Sx; −⟩ (7)

The last step of the measurement procedure is the post-selection of
the final path state which is

|Pf⟩ = |Px; +⟩ = 1√
2
(|Pz; +⟩+ |Pz; −⟩) , (8)

where the action of the path post-selection is equivalent to a projection
onto ∣Pf⟩⟨Pf∣. This yields the final state of the composite system ∣Ψf⟩,
given by

||Ψf⟩ = ⟨Pf|Pi⟩ [cos 𝛼
2
||Sx; +⟩ − i sin 𝛼

2

⟨
𝜎

p
z

⟩
w
||Sx; −⟩] |Pf⟩, (9)

with ⟨𝜎p
z ⟩w ≡ ⟨Pf|𝜎p

z |Pi⟩⟨Pf|Pi⟩ . Finally, the weak value of the neutron path oper-

ator 𝜎
p
z is determined by evaluating the pointer system, that is repre-

sented by the neutron’s spin. Projective measurements along the six spin
directions ± x, ± y and ± z, yield six intensities Ij± = |||⟨Sj; ±|Ψf⟩|||2 with

2
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Fig. 1. Neutron interferometric setup for determination of real and imaginary, as well as modulus, of the path’s weak value measured both weakly ⟨𝜎p
z ⟩w and

with stronger generalized measurements ⟨𝜎p
z ⟩g. The incident beam is already monochromatic with wavelength 𝜆0 = 1.91 Å, due to reflection from a perfect silicon

monochromator (not depicted in this figure). The individual neutron optical components are explained in the main text, as well as in Figs. 3 and 4.

(j = x, y, z), which allow for extraction of the imaginary and real part as
well as the modulus of the path operator’s weak value ⟨𝜎p

z ⟩w. They are
given explicitly by

Ix+ = |⟨Sx; +|Ψf⟩|2 = |⟨Pf|Pi⟩|2cos2 𝛼
2

(10a)

Ix− = |⟨Sx; −|Ψf⟩|2 = |⟨Pf|Pi⟩|2sin2 𝛼
2
|⟨𝜎p

z ⟩w|2 (10b)

Iy+ = |⟨Sy; +|Ψf⟩|2 = |⟨Pf|Pi⟩|2
4

(
1 + cos 𝛼 + (1 − cos 𝛼)|⟨𝜎p

z ⟩w|2
+ 2 Re

⟨
𝜎

p
z

⟩
w

sin 𝛼
)

(10c)

Iy− = |⟨Sy; −|Ψf⟩|2 = |⟨Pf|Pi⟩|2
4

(
1 + cos 𝛼 + (1 − cos 𝛼)|⟨𝜎p

z ⟩w|2
− 2 Re

⟨
𝜎

p
z

⟩
w

sin 𝛼
)

(10d)

Iz+ = |⟨Sz; +|Ψf⟩|2 = |⟨Pf|Pi⟩|2
4

(
1 + cos 𝛼 + (1 − cos𝛼)|⟨𝜎p

z ⟩w|2
+ 2 Im

⟨
𝜎

p
z

⟩
w

sin 𝛼
)

(10e)

Iz− = |⟨Sz; −|Ψf⟩|2 = |⟨Pf|Pi⟩|2
4

(
1 + cos 𝛼 + (1 − cos𝛼)|⟨𝜎p

z ⟩w|2
− 2 Im

⟨
𝜎

p
z

⟩
w

sin 𝛼
)
. (10f)

Combining the individual equations from above yields the respective
relations for real and imaginary part of the weak value of 𝜎p

z , as well as
its modulus as

Re
⟨
𝜎

p
z

⟩
w
= 1

2
cot

(
𝛼
2

) Iy+ − Iy−
Ix+

(11a)

Im
⟨
𝜎

p
z

⟩
w
= 1

2
cot

(
𝛼
2

) Iz+ − Iz−
Ix+

(11b)

||||
⟨
𝜎

p
z

⟩
w

|||| = cot
(
𝛼
2

)√
Ix−
Ix+

. (11c)

At this point we want to emphasize that no approximations are made
to derive these expressions. As a consequence, the relations (11a) to
(11c) hold for any value of the spin rotation angle 𝛼, i.e., for arbitrary
measurement strengths. In the case of stronger generalized measure-
ments with 𝛼 1 we will denote the obtained quantity as ⟨𝜎p

z ⟩g to
contrast it with the standard weakly measured value ⟨𝜎p

z ⟩w with 𝛼 ≪ 1.
To connect these expressions with the previous generalized eigen-

value results discussed in the introduction, we focus on the real part of
the weak value in Eq. (11a). Noting that this real part is obtained from

the relative y intensities, we re-examine the structure of the y-intensity
expressions. Recall that the initial spin state is ||Sx; +⟩, and the path-
spin interaction can be written Û𝛼 = cos 𝛼

2 − i𝜎s
z𝜎

p
z sin 𝛼

2 . As such, if the
y spin basis is measured, the path degree of freedom will be affected by
the Kraus operators

M̂y± = ⟨Sy ; ±|Û𝛼 |Sx; +⟩ = e∓i𝜋∕4√
2

[
cos 𝛼

2
± 𝜎

p
z sin 𝛼

2

]
(12)

such that the associated POVM elements are

Êy± = M̂†
y±M̂y± = 1

2

[
1 ± 𝜎

p
z sin 𝛼

]
. (13)

It is then clear that assigning the values 𝛽y± = ±1/ sin 𝛼 produces the
operator identity∑
y±

𝛽y±Êy± = 𝜎
p
z (14)

indicating that 𝛽y± are the appropriate generalized eigenvalues to
assign the spin pointer in the basis of y in order to measure 𝜎

p
z .

The conditioned average of generalized eigenvalues given the initial
and final path states is

∑
y±

𝛽y±p(y ± |i, f) = 1
sin 𝛼

Iy+ − Iy−
Iy+ + Iy−

(15)

using the intensities

Iy± = |⟨Pf ∣ M̂y± ∣Pi⟩|2
= |⟨Pf|Pi⟩|2

4

(
1 + cos 𝛼 + (1 − cos𝛼)|⟨𝜎p

z ⟩w|2 ± 2 Re
⟨
𝜎

p
z

⟩
w

sin 𝛼
)
,

(16)

equivalent to Eqs. (10c) and (10d). The conditioned average then yields

1
sin 𝛼

Iy+ − Iy−
Iy+ + Iy−

= 2 Re⟨𝜎p
z ⟩w

1+ ∣⟨𝜎p
z ⟩w∣2 − (∣⟨𝜎p

z ⟩w∣2 − 1) cos 𝛼
, (17)

which converges to the real part of the weak value in the limit 𝛼 → 0,
consistent with the general conclusions of Refs. [22–24].

The key insight that extends this idea to the exact intensity expres-
sion in Eq. (11a) is that the denominator of Eq. (17) can be exactly can-
celed by renormalizing the intensity difference not by the y-intensity
sum, but rather with an appropriately weighted Ix+. This corrected
renormalization then recovers the exact weak value expression for
any interaction strength 𝛼. Moreover, similar renormalization insights
recover the other two exact expressions in Eqs. (11b) and (11c).

3
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Fig. 2. Dimensions of the applied triple Laue (LLL) neutron interferometer. The
interferometer is cut from a single ingot of a silicon perfect crystal. Three blades
are machined and left attached to a common silicon base to maintain the perfect
alignment of all Si atoms in the single crystal.

4. Experimental realization

The experiment was carried out at the neutron interferometer instru-
ment S18 at the high-flux reactor of the Institute Laue-Langevin (ILL)
in Grenoble, France. A schematic illustration of the interferometric
setup is depicted in Fig. 1. The dimensions of the applied triple Laue
(LLL) neutron interferometer are given in Fig. 2. A monochromatic
beam with mean wavelength 𝜆0 = 1.91 Å (𝜆/𝜆0 ∼ 0.02) and 5 × 5 mm2

beam cross section, is selected by a triple bounce silicon perfect crystal
monochromator (not shown in Fig. 1) from am white beam. The beam is
polarized by a birefringent magnetic field prism in + z-direction (≅1 T),
since, owing to the angular separation at the deflection (a few seconds
of arc for the parallel and anti-parallel spin state), the interferometer is
adjusted so that only the spin-up component fulfills the Bragg condition
at the first interferometer plate.

4.1. Pre-selection

After passing the magnetic field prism, the neutrons enter a static
magnetic guide field set to 13G, covering the entire setup, which points
in the +z-direction and prevents depolarization. Before the neutron
beam enters the interferometer, the neutron’s spin is rotated into the
x-direction by DC Coil 1 carrying out a 𝜋

2 spin-rotation, which is illus-
trated in Fig. 3. The spin turner consists of a DC coil which produces
a static magnetic field By pointing in y-direction and a perpendicular
(outer) coil in z-direction, which is adjusted such that it exactly com-
pensates the contribution of the magnetic guide field. Within the DC
coil, the spin precesses about the y-axis due to Larmor precession about
the magnetic field axes. B𝜋∕2

y is adjusted such that it induces a 𝜋
2 spin-

rotation, thereby preparing the initial spin state of the probe system||Si⟩ = ||Sx; +⟩. To tune the relative phase 𝜒 between the orthogonal path
eigenstates, a parallel sided sapphire slab is inserted between the first
and the second plate of the interferometer as a phase shifter. By rotating
the phase shifter plate 𝜒 = −Npsbc𝜆D (with the thickness of the phase
shifter plate D, the neutron wavelength 𝜆, the coherent scattering length
bc and the particle density Nps in the phase shifter plate) can be tuned
systematically due to the different relative path lengths in path I and
II. So the purpose of the phase shifter is to tune the initial path state as
described in Eq. (4) thereby completing the pre-selection yielding the
pre-selected path state ||Pi⟩ = 1√

2

(||Pz; +⟩ + ei𝜒 ||Pz; −⟩)

Fig. 3. (a) By field scan of DC-Coil 1 with a suitable compensation field
Bz = −13G. The current of the local minimum (𝜋-flip) corresponds to a field of
By = 17.6G. For a ± 𝜋

2
-rotation half of this field (±8.8G) is required. (b) Design

of the spin rotator coil: two layers of wires are wound perpendicular to each
other, so that magnetic fields in the z and y-directions can be created.

4.2. Tunable interaction strength

Inside the interferometer, right before the middle plate, a coil in
Helmholtz configuration in each beam path enables us to perform path-
dependent spin rotations, coupling the neutron’s path and spin [29].
The coils, placed inside temperature-controlled and water filled boxes,
produce additional magnetic fields in the ± z-direction causing the
neutron spins’ Larmor precession frequency 𝜔L to decrease or increase
depending on the sign of the field, which is minus for path I and plus
for path II. The strength of the magnetic field determines the magni-
tude of the rotation angle 𝛼, accounting for the interaction-strength,
which is illustrated in Fig. 4. The experiment is performed with two
different values of 𝛼: to test the interaction in a weak regime 𝛼 is set
to 15 ± 1◦, which corresponds to a magnetic field B±𝛼=15(1)◦

z = 1.9 G.
For the strong interaction 𝛼 is set to 90 ± 2◦, which corresponds to
the maximum measurement strength (due to the orthogonality of the
spin states after the interaction) with B±𝛼=90(2)◦

z = 11.8 G. The accu-
racy of the spin rotation angles is obtained from the fit parameters from
Fig. 4(a).

4.3. Post-selection and pointer read-out

At the interferometer’s third plate the beams are recombined by
which the path post-selection is carried out. Only neutrons leaving the
interferometer in the forward direction with a relative phase 𝜒 = 0,
denoted as |Pf⟩ = 1√

2
(|Pz; +⟩ + |Pz; −⟩) are spin analyzed. This proce-

dure is called pointer read-out of the probe system (in our case the
spin). The spin analysis is performed by a second DC coil mounted on

4
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Fig. 4. (a) Current scan of the spin manipulators inside the interferometer: If a
current is applied to the Helmholtz coils inside the interferometer they cause an
additional Larmor precession of the neutron’s spin in the xy-plane leading to a
change of the azimuth angle 𝜙. A rotation of 𝜙 = 𝜋 corresponds to a magnetic
field of B±𝛼=𝜋

z = 23.6 G. (b) Depiction of an altered Helmholtz coil pair with
the beam (green) at the center. (c) Photograph of an actual coil pair on a 3D
printed frame, which is inserted into a water-filled, temperature controlled box.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)

a translation stage in combination with a CoTi supermirror. Inside the
coil a tunable magnetic field rotates the spin by a polar angle 𝜃. Hence,
for spin analysis direction ± z the polar angle 𝜃 is set to 0 and 𝜋, respec-
tively. Depending on the coil’s position along the neutrons’ trajectory,
the spin’s azimuth angle 𝜙 is tuned due to the spin’s Larmor precession
within the magnetic guide field. Thus for spin analysis direction ± x a
polar angle 𝜃 = ± 𝜋

2 and azimuthal 𝜙 = 𝜋
2 is chosen. Finally for ± y we

have 𝜃 = ± 𝜋
2 and 𝜙 = 0. Subsequently the supermirror array (together

with DC-coil 2) carries out a projective measurement along the direction
defined by 𝜃 and 𝜙 of our probe system that is the neutron’s spin. In a
final step the neutrons are detected by a 3He counter (O-detector). Start-
ing from a beam cross section of 5 × 5 mm2 and taking the beam broad-
ening at each of the three interferometer plates into account (depicted
Fig. 2), a final (maximal) flux of ∼ 50 neutrons cm−2 s−1 is recorded at
the O-detector.

The neutron interferometer is extremely sensitive to thermal fluctu-
ations. All heat generating devices, such as the magnetic guide field or
the spin manipulator inside the interferometer, are cooled with temper-
ature controlled water. Fig. 5 illustrates the sensitivity of the neutron
interferometer’s contrast on these temperature parameters. In Fig. 5(a)
the temperature of the guide field’s cooling water is varied and sub-
sequently phase shifter scans are performed from which the contrast
is determined. The highest value in contrast indicates the correct opti-
mum temperature. In Fig. 5(b) the same procedure is applied to the
cooling water of the spin manipulators inside the interferometer.

The intensity modulations Ij±, with j = x, y, z, of both measurement
strengths, i.e., for weak and strong interaction, are depicted in Fig. 6.
Note that the index j denotes the measurement direction of our probe
system—the neutron’s spin, while a change in 𝜒 alters the initial state||Pi⟩ = 1√

2

(||Pz; +⟩+ ei𝜒 ||Pz; −⟩) of the path. Given the initial state of the

Fig. 5. (a) Observed contrast as a function of the guide field temperature and
(b) contrast as a function of the temperature of the spin manipulators inside
the interferometer. The temperature of the cooling water is changed each time
before a phase shifter scan is performed. Error bars indicate ± one standard
deviation of the measured interferometer contrast.

composite system (path and probe system spin) ||Ψi⟩ = ||Pi⟩ ||Si⟩ from Eq.
(3), the evolution operator Ĥint of Eq. (5) and the post-selected path
state ||Pf⟩ of Eq. (8) it is possible to analytically calculate Ij±, with j = x,
y, z for ideal circumstances. The intensities are given by

Ix+ = cos2 𝛼
2

cos2 𝜒

2
(18a)

Ix− = sin2 𝛼
2

sin2 𝜒
2

(18b)

Iy+ = Iy− = 1
4
(1 + cos 𝛼 cos𝜒) (18c)

Iz+ = 1
4 (1 + cos (𝛼 + 𝜒)) (18d)

Iz− = 1
4 (1 + cos (𝛼 − 𝜒)) . (18e)

The six panels in Fig. 6(a) show the interferograms of the weak inter-
action (𝛼 = 15◦). For Iw

x+ both the pre- and post-selected spin state are
∣Sx; +⟩, yielding a large count rate, whereas the count rate of Iw

x− is very
low, since initial and final spin states are orthogonal. Iw

y± are identical
having half of the maximal count rate. Finally Iw

z± are phase shifted by
two times 𝛼 also at half of the maximal count rate. In the six panels
of Fig. 6(b) the interferograms for the strong interaction are shown.
Resulting from the large spin rotation of 𝛼 = ±90◦ in each beam path,
Istx± now show the same average count rate, but are phase shifted by 𝜋.
Ist
y± now show almost no contrast at all for strong interaction strength.

The phase shift between Ist
z+ and Ist

z− is now also 𝜋 and therefore easy to
resolve.
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Fig. 6. Intensity modulations due to rotation of the phase shifter observed for
pin analysis directions ± x, ±y and ± z. In (a) interferograms for weak interac-
tion (𝛼 = 15 ± 1)◦) are plotted and in (b) for strong interaction (𝛼 = 90 ± 2◦).

5. Results

For the extraction of the imaginary part of ⟨𝜎p
z ⟩w [and ⟨𝜎p

z ⟩g] the
intensities Iz± and Ix+ are required. Here Ix+ acts as a normalization
factor, while resolving the phase shift between Iz+ and Iz− is crucial
for determination of ℑ⟨𝜎p

z ⟩w [and ℑ⟨𝜎p
z ⟩g]. Since this phase shift is

expected to be two times 𝛼, it is much harder to resolve in the weak
interaction case, which is depicted in Fig. 7(a) middle panel, compared
to the stronger generalized measurements ℑ⟨𝜎p

z ⟩g with maximal inter-
action strength (𝛼 = 90◦) from Fig. 7(b).

Similarly ℜ⟨𝜎p
z ⟩w, as well as ℜ⟨𝜎p

z ⟩g, (Fig. 7(a,b) top panels) are
extracted from the intensities Iy± and Ix+. Since theory predicts the
value to be zero, Iy+ and Iy− are very close or even equal. Furthermore
the interferograms of Iy± lose contrast for increasing 𝛼, due to the spin
rotation inside the interferometer approach towards an orthogonal spin

Fig. 7. Real, Imaginary and modulus of the path observable 𝜎z. In (a) weak
measurements (𝛼 = 15◦) yield the weak value ⟨𝜎z⟩w, whereas in (b) stronger
generalized measurements (𝛼 = 90◦) are used to produce ⟨𝜎z⟩g.
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state. For 𝛼 = 90◦ the spin state is completely orthogonal and thus no
contrast is observed (see Fig. 6(b) middle panel).

Finally the modulus of ⟨𝜎p
z ⟩w and ⟨𝜎p

z ⟩g (Fig. 7(a,b) bottom panels)
are directly obtained from the Ix± data: they are proportional to the
square root of Ix−/Ix+. The advantage of the strong interaction is intu-
itively understood: the discrimination of the relevant signal from the
background is crucial, for 𝛼 = 0◦ Ix− is expected to be zero and the
signal becomes larger with increasing 𝛼.

While both measurements are in good agreement with the theoreti-
cal predictions, the strong measurement results are significantly better,
in terms of precision, which is a measure of fluctuation (size of error-
bars), and accuracy, being a measure of deviation from the theoretical
prediction. The strong interaction scheme outperforms the weak one
in both accuracy and precision for all settings of experimentally deter-
mined parameters. Especially for the modulus the superiority of ⟨𝜎p

z ⟩g
over the weakly measured ⟨𝜎p

z ⟩w becomes apparent when comparing
the resulting plots. There is another important experimental factor that
has to be taken into account and that is the measurement time. To
resolve the small phase shifts between Iz+ and Iz− as well as to distin-
guish Ix− from the background long counting times were necessary for
the weak interaction. For each point on the weak interaction (𝛼 = 15◦)
curve a counting time of 540 s was necessary, while 290 s were suffi-
cient for the strong one (𝛼 = 90◦).

Our protocol for determination of weak values makes it possible to
obtain weak values of a two-level quantum system with high accuracy
and arbitrary interaction (measurement) strength. Increasing the mea-
surement strength provides a clear discrimination of small signals from
background which is of particular significance whenever dealing with
low count rates.

6. Conclusions and outlook

In summary, we have presented a weak value determination scheme
via arbitrary interaction strengths and applied it to experimentally
determine weak values, using generalized measurements with both
weak interactions and strong interactions. Experimental evidence is
given that strong interactions are superior to weak interactions in terms
of accuracy and precision, as well as required measurement time. Our
measurement scheme is not limited to the neutron’s spin and path, but
is in fact completely general and can be used for any coupling between
two two-level quantum systems.
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