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Abstract
Unitarity is a difficult concept to implement in canonical quantum gravity
because of state non-normalisability and the problem of time. We take a real-
ist approach based on pilot-wave theory to address this issue in the Ashtekar
formulation of the Wheeler–DeWitt equation. We use the postulate of a def-
inite configuration in the theory to define a global time for the gravitational-
fermionic system recently discussed in Alexander et al (2022 Phys. Rev. D
106 106012), by parameterising a variation of a Weyl-spinor that depends on
the Kodama state. The total Hamiltonian constraint yields a time-dependent
Schrodinger equation, without semi-classical approximations, which we use
to derive a local continuity equation over the configuration space. We imple-
ment the reality conditions at the level of the guidance equation, and obtain
a real spin-connection, extrinsic curvature and triad along the system traject-
ory. We obtain quantum corrections to deSitter spacetime from the guidance
equation. The non-normalisable Kodama state is naturally factored out of the
full quantum state in the conserved current density, opening the possibility
for quantum-mechanical unitarity. We also give a pilot-wave generalisation
of the notion of unitarity applicable to non-normalisable states, and show the
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existence of equilibrium density for our system. Lastly, we find unitary states
in mini-superspace by finding an approximate solution to the Hamiltonian
constraint.

Keywords: problem of time, normalisability, unitarity, pilot-wave theory,
de Broglie–Bohm, Ashtekar variables

1. Introduction

Quantum gravity effects may become important in regimes where quantum fluctuations of the
gravitational field and high curvature coincide, such as close to the classical big bang and
black hole singularities. In such situations and given the perturbative non-renormalisability of
quantum gravity, a non-perturbative treatment is a desired option. A conservative approach to
quantisation is a Schrodinger quantisation, such as the Wheeler–DeWitt (WDW) equation [1].
TheWDWequation is non-polynomial in the metric variables and is difficult to solve. Progress
was made with the Ashtekar variables which rendered the WDW equation polynomial in the
configuration variables [2].

A major leap in progress was found by Kodama by solving the WDW equation of general
relativity in terms of the Ashtekar connection [3]. This solution, called the Chern–Simons–
Kodama (CSK) is an exact wavefunction that solves the quantumWDWequation for a positive
cosmological constant. It was shown that this CSK state consistently reduces to the Hartle–
Hawking–Vilenkin state of deSitter space, and contains a multitude of other solutions, includ-
ing black-hole quantum spacetimes [4, 5]. Recently, an exact CSK state was found with the
inclusion of fermions [6].

Despite this success, the CSK state as well as other formulations of the WDW equation, is
fraught with conceptual and technical problems that all approaches to the WDW suffer [7–9].
Since time evolution is a gauge redundancy, the CSK state is timeless. Also, the Lorentzian
CSK state is non-normalisable for the naive-inner product, although a recent proposal for
a new non-perturbative inner product was proposed [10]. The twin problems of time and
non-normalisability make the definition of unitarity murky. Another issue is that the non-
normalisable part of the Kodama state, when linearised yields gravitons with negative energy
in its spectrum. These problems are to be expected since the CSK state is background inde-
pendent and a proposed ground state. In this work, we address the interconnected problems of
time, normalisability and unitarity by recasting the WDW equation in the Ashtekar formalism
using pilot-wave theory [11–15], which is a realist formulation of quantum mechanics.

Our approach introduces three new ideas to attack these problems. First, we use the pos-
tulate of a definite configuration in pilot-wave to define for the first time a real, relational
time in terms of variation of massless fermionic field. This allows us to discuss time evolu-
tion of the quantum state, which is shown to follow a Schrodinger equation, without using
semi-classical approximations. Second, we approach the question of unitarity by deriving a
continuity equation over the configuration space, instead of using operator valued reality con-
ditions. This enables us to find a locally conserved current density on the configuration space
and thereby discuss unitarity from quantum-mechanical perspective. Third, we also general-
ise the notion of unitarity from pilot-wave perspective, which allows us to discuss unitarity
without imposing normalisability.

The article is structured as follows. In section 2 we give an introduction to the Ashtekar
formalism and the Kodama state. We give an introduction to field-theoretic pilot-wave theory
with a brief discussion of complex massive scalar field in section 3. In section 4, we develop
a pilot-wave formulation of the gravitational-fermionic system in section [6], making use of
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some of the ideas developed in section [16]. We first introduce a global time that parameterises
a particular variation of the fermionic field and then derive the continuity equation and corres-
ponding current density in section 4.1. We discuss the physical interpretation in section 4.2,
including normalisability in section 4.2.1, guidance equation for the Ashtekar connection in
section 4.2.2, and reality conditions in section 4.2.3. We discuss the notion of unitarity in our
approach in section 5. We discuss quantum-mechanical unitarity using our continuity equation
in section 5.1, a generalised notion of unitarity using pilot-wave in section 5.2, and the exist-
ence of pilot-wave unitary states in mini-superspace in section 5.3.2. We discuss our results
and future directions in section 6.

2. The Ashtekar formalism and the CSK state

In pursuit of a WDW quantisation of gravity, it is instructive to understand how the Ashtekar
connection and the resultingHamiltonian, diffeomorphism, and gauge constraints emerge from
a manifestly covariant four-dimensional (4D) theory of gravity. In what follows we closely
follow the derivation of the Ashtekar variables in the work of [6]. In the Ashtekar formalism
[2, 17], gravitational dynamics on a 4D manifold M4 is not described by a metric gµν but3,
rather, a real-valued gravitational field eIµ(x), mapping a vector vµ in the tangent space ofM4

at the point x into Minkowski spacetime M4 (with metric ηIJ = diag(−1,1,1,1)IJ). Locally,
the metric onM4 is gµν = ηIJeIµe

J
ν .

The Lorentz connection ωµI
J is ωIJ ≡ ωµI

Jdxµ, dωIJ ≡ ∂µωνI
Jdxµ ∧ dxν is the exterior

derivative, and the curvature of ω is RIJ = dωIJ+ωI
K ∧ωKJ. The action of self-dual gravity is

(up to the gravitational constant 8πG)

S=
1

32πG

ˆ
M4

[
∗
(
eI ∧ eJ

)
∧RIJ+ ieI ∧ eJ ∧RIJ−

Λ

6
ϵIJKLe

I ∧ eJ ∧ eK ∧ eL
]
, (1)

where ∗ is the Hodge dual, the first term is the Hilbert–Palatini action and the second is the
Holst term (proportional to the first Bianchi identities in the absence of torsion).

Here we are interested in the Hamiltonian formulation in Ashtekar variables [2, 19]. In the
gauge choice e0µ = 0, it is convenient to define the densitised triad Eai = ϵijkϵ

abcejbe
k
c, which is

conjugate to the self-dual connection

Aia (x)≡−1
2
ϵijkωaj

k− iωa0
i. (2)

As the Lorentz connection (and, in particular, the spin connection Γia ≡− 1
2ϵ

ij
kωaj

k) is real, A
is complex-valued and obeys the reality conditions (for a discussion, see e.g. [20])

Aia +Aia = 2Γia [E] , E
i
a = Eia (3)

where X denotes complex conjugate of X and the spin connection solves the equation de+
Γ[E]∧ e= 0.

3 We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) in units of c= 1. We use boldface letters x to
indicate three-vectors, and we use x to denote four-vectors. Conventions for curvature tensors, covariant and Lie
derivatives are all taken from Carroll [18]. Greek indices (µ,ν, . . .) denote spacetime indices, Latin indices (a,b, . . .)
denote spatial indices, and Latin indices (I,J, . . .) and (i, j, . . .) denote indices for the internal space ranging from 0,
. . . 3 for the former and 1, . . . 3 for the latter.
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The Poisson bracket of the elementary variables A and E is{
Aia (x, t)

}
Ebj (y, t) = i8πGδbaδ

i
jδ (x− y) . (4)

Introducing the ‘magnetic’ field and the gauge field strength

Bai ≡ 1
2
ϵabcFibc , (5)

Fkab = ∂aA
k
b− ∂bA

k
a+(8πG)ϵij

kAiaA
j
b . (6)

Now, let us construct the CSK state by solving the WDW equation. Given the Hamiltonian

HWDW = ϵijkE
aiEbj

(
F k

ab+
Λ

3
ϵabcE

ck

)
, (7)

which acts on somewave functionψ[A], and wewant to find the form ofψ[A] that is annihilated
by (7). Applying the regular canonical quantisation procedure, i.e.

Êai → 8πGℏ
δ

δAai
, (8)

the annihilation of the quantum state becomes

ĤWDWψ [A] = (8πGℏ)2 ϵijk
δ

δAai

δ

δAbj

(
F k

ab+
8πGℏΛ

3
ϵabc

δ

δAck

)
ψ [A] = 0. (9)

Putting the expression inside the brackets to zero, we get

ϵabc
δψ

δAck
=− 3

8πGℏΛ
F k

abψ [A] . (10)

Contracting both sides with ϵdab gives us

2δdc
δψ

δAck
=− 3

ℓ2PlΛ
ϵdabF k

abψ [A]⇔ δψ

δAai
=− 3

2ℓ2PlΛ
ϵabcF i

bcψ [A] , (11)

where ℓ2Pl = 8πGℏ is the Planck length. Recognising the termmultiplying the wave function to
be the Chern–Simons functional, we can write down the exact solution to the WDW equation
as being

ψK [A]≡N exp

(
3

2ℓ2PlΛ

ˆ
YCS [A]

)
, (12)

where N is some normalisation constant independent of the gauge field and

YCS [A] = Tr

[
A∧ dA+

2
3
A∧A∧A

]
=−1

2

(
AidAi+

1
3
ϵijkA

iAjAk
)

(13)

is the Chern–Simons functional, with the trace taken in the Lie algebra. It can be said that the
Wentzel–Kramers–Brillouin (WKB) semiclassical limit of the CSK state is deSitter spacetime
[21]4, with

Aia = i

√
Λ

3
e
√

Λ
3 tδia , Eai = e2

√
Λ
3 tδai . (14)

4 See [22] for criticisms of this view.
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Now that we have the CSK state solely in terms of the gravitational connection and the
cosmological constant, we would like to explore a full nonperturbative state that also includes
the fermionic Hamiltonian.

3. Pilot-wave formulation of massive complex scalar field

It is helpful to begin with a discussion of pilot-wave theory with field ontology as an example
(for further discussion, see [11, 14, 23, 24]). Consider a massive complex scalar field ϕ(⃗x, t) on
flat space-time with the Lagrangian density L= ∂µϕ∂µϕ −m2ϕϕ, wherem labels the mass, ϕ
labels the complex conjugate of ϕ and the space-time metric is η = (1,−1,−1,−1). The con-
jugate momenta are π = δL/δ∂0ϕ = ∂0ϕ and π = δL/δ∂0ϕ= ∂0ϕ. The Hamiltonian density
is H= πϕ +πϕ−L= ππ + ∇⃗ϕ · ∇⃗ϕ +m2ϕϕ.

To quantise the system, the canonical commutation relations are imposed [25]. Working in
theϕ,ϕ representation, the conjugatemomenta are represented by the operators π̂→−iℏδ/δϕ,
π̂→ iℏδ/δϕ and the Schrodinger equation becomes

ˆ
M

ĤΨ = iℏ
∂Ψ

∂t
(15)

⇒
ˆ
M

[
ℏ2

δ2Ψ

δϕδϕ
+
(
∇⃗ϕ · ∇⃗ϕ +m2ϕϕ

)
Ψ

]
= iℏ

∂Ψ

∂t
(16)

where M labels the spatial manifold and Ψ[ϕ,ϕ, t] is a functional of ϕ and ϕ. Using (16) and
its complex conjugate, we can prove the following continuity equation

∂|Ψ|2

∂t
+∇ϕ J+∇ϕJ= 0 (17)

where ∇ϕ =
´
M δ/δϕ and

J=
ℏ
2i

[
Ψ
δΨ

δϕ
−Ψ

δΨ

δϕ

]
= R2 δS

δϕ
. (18)

Here Ψ = ReiS/ℏ and R, S are real time-dependent functionals of ϕ, ϕ. The evolution of the
field is given by the guidance equation

δϕ (⃗x)
δt

≡ J
|Ψ|2

=
δS

[
ϕ,ϕ, t

]
δϕ (⃗x)

. (19)

Equation (19) implies that the evolution of the scalar field is spatially nonlocal (overM). This
is because S[ϕ,ϕ, t] is a functional of ϕ(⃗x), ϕ(⃗x), and thus depends on values of ϕ(⃗x), ϕ(⃗x) at
all x⃗ in M in general. Also note that (19) is a local guidance equation in the configuration
space (ϕ,ϕ). That is, the evolution of a particular field ϕ(⃗x) does not depend on other field
configurations as S[ϕ,ϕ, t] in (19) is evaluated at a particular point on the configuration space.

4. Schrodinger equation of the gravitational-fermionic system

We wish to quantise general relativity with a positive cosmological constant and a two-
componentWeyl spinor. As we will see, the corresponding total Hamiltonian constraint, which
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was discovered in [6], becomes equivalent to a time dependent Schrodinger equation, where
the first order spinor Hamiltonian will play exactly the role of a relational clock. This approach
has advantages over scalar-field relational clocks since the latter may introduce negative norm
states due to being second order in time derivative, as opposed to the Dirac equation, which is
first order.

The gravitational-spinor action is:

SH+D =
1
2κ

ˆ
d4xe

(
eµI e

ν
J R

IJ
µν −Λ+ iΨ̄γIeµI DµΨ − iDµΨγ

IeµI Ψ
)

(20)

where the covariant derivative is:

DµΨ = ∂µΨ − 1
4
AIJµγIγJΨ (21)

DµΨ= ∂µΨ̄+
1
4
Ψ̄γIγJA

IJ
µ (22)

upon performing a 3+ 1 decomposition as discussed in section 2, the total Hamiltonian density
for the combined fermionic gravitational system [6] is κ−1(ÑĤ+NaV̂a) where

Ĥ=
1
2κ
ϵijkÊ

bjÊai
(
F k

ab+
Λ

3
ϵabcÊ

ck

)
+
(
D̂aξ

)
A
σABi ÊaiΠ̂B+ Êai

(
D̂aξ

)
A
σABi Π̂B (23)

V̂a =
i
2κ
F k

abÊ
b
k +

(
D̂aξ

)
B
Π̂B (24)

and N> 0, Na are the lapse function and shift vectors respectively. Here ξA(⃗x) is a two-
component Weyl spinor and the corresponding conjugate momentum is labelled by ΠB(⃗x)
(A,B ∈ {+,−}) [6]. We have chosen the Ashtekar ordering [2, 3, 21, 26] for the purely grav-
itation part of the constraints. For the interaction terms between gravity and fermion, we have
Weyl ordered Êai and ordered Π̂B to directly operate on the quantum state. We remove diver-
gent terms throughout in our calculations.

The total Hamiltonian constraint isˆ
M
κ−1

(
ÑĤ+NaV̂a

)
Ψ[A, ξ] = 0 (25)

where M labels the spatial manifold. We use the quantisation scheme (using commutators
[27, 28])

Êai → δ

δAai
, Π̂A →−i δ

δξA
(26)

where we have used natural units. Equation (25) implies

ˆ
M
Ñ

δ

δAai

[
ϵijk
2

δ

δAbj

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
− 2

(
D̂aξ

)
A
σABi i

δ

δξB

]
Ψ[A, ξ]

+

ˆ
M
iNb

δ

δAai

[
F b

ai

2
Ψ[A, ξ]

]
=

ˆ
M
Nb

(
D̂bξ

)B
i
δ

δξB
Ψ[A, ξ] . (27)

Let us define

∂Ψ[A, ξ]
∂t ′

≡
ˆ
M

δξB

δt ′
δ

δξB
Ψ[A, ξ] (28)

6
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where

δξB

δt ′
≡ Nb

(
D̂bξ

)B
. (29)

That is, we choose a particular variation of the fermionic field ξ, suggested by the form of
the Hamiltonian, to implicitly define a real, formal time variable t′ that parameterises this
variation. Note that equation (29) is not a semi-classical background as ξ is piloted by Ψ[A, ξ]
via its dependence on Aai (see equation (43) below). Equation (29) is naturally consistent with
a pilot-wave interpretation as the latter posits a definite system configuration (A, ξ). It is also
consistent with any other interpretation where a definite configuration of the quantum system
is physically meaningful.

We can use (29) to rewrite equation (27) as

ˆ
M
Ñ

δ

δAai

[
ϵijk
2

δ

δAbj

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
− 2

(
D̂aξ

)
A
σABi i

δ

δξB

]
Ψ[A, ξ]

+

ˆ
M
iNb

δ

δAai

[
F b

ai

2
Ψ[A, ξ]

]
= i

∂Ψ[A, ξ]
∂t ′

(30)

which resembles the time-dependent Schrodinger equation.

4.1. Continuity equation and current density

Using the complex conjugates of equations (28) and (30), we define (suppressing the labels A,
ξ in Ψ for brevity)

∂ΨΨ

∂t ′
=

ˆ
M

δξB

δt ′
δΨ

δξB
Ψ +

ˆ
M

Ψ
δξB

δt ′
δΨ

δξB
. (31)

We know from [16] that the current density is generally of the form |Ψ|2Ω, whereΩ depends
on the configuration variables and their conjugates, is independent of time, and is real and
positive semi-definite. We define Ω≡ Ω[A,A] as we have used ξ to define our time variable t′.
We can then show that

∂
(
|Ψ|2Ω

)
∂t ′

+

ˆ
M

[
δ

δAai

(
ΩΨ

{
iÑϵijk
2

δ

δAbj

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
Ψ + 2Ñ

(
D̂aξ

)
A
σABi

δ

δξB
Ψ

− Nb
F b

ai

2
Ψ

})
+ c.c

]
=

ˆ
M

|Ψ|2
[
δΩ

δAai

{
iÑϵijk
2Ψ

δ

δAbj

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
Ψ

+
2Ñ
Ψ

(
D̂aξ

)
A
σABi

δ

δξB
Ψ +Nb

F b
ai

2

}
+ c.c

]
(32)

where c.c denotes complex conjugate of the term in square bracket, and we have used
δΨ/δAai = δΨ/δAai = 0∀a, i as Ψ is a holomorphic functional of A. The right-hand side of
equation (32) can be written as

7
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ˆ
M

[
δ

δAbj

(
Ψ

δΩ

δAai

iÑϵijk
2

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
Ψ

)
+ c.c

]
−
[

δ

δAck

(
ΨΨ

δ2Ω

δAaiδAbj

iÑϵijk
2

Λ

3
ϵabc

)
+ c.c

]
+

[
δ

δξB

(
δΩ

δAai
2ΨΨÑ

(
D̂aξ

)
A
σABi

)
+ c.c

]
+ |Ψ|2

{
−
[

δ2Ω

δAaiδAbj

iÑϵijk
2

F k
ab+ c.c

]
+

[
δ3Ω

δAaiδAbjδAck

iÑϵijk
2

Λ

3
ϵabc+ c.c

]
−
[
Nb

δΩ

δAai

F b
ai

2
+ c.c

]}
. (33)

We require that Ω be such that all the source-like terms vanish. This will be true if

−
[

δ2Ω

δAaiδAbj

iÑϵijk
2

F k
ab+ c.c

]
+

[
δ3Ω

δAaiδAbjδAck

iÑϵijk
2

Λ

3
ϵabc+ c.c

]
−
[
Nb

δΩ

δAai

F b
ai

2
+ c.c

]
= 0. (34)

Equation (34) supplies the Ω needed to define the current density. We observe that

Ω
[
A,A

]
=

1

ΨK [A]ΨK [A]
(35)

solves (34), where ΨK[A] is the Kodama state. As the weight factor Ω is unique and does not
depend on the Hamiltonian or the state [29], we take (35) henceforth. Equation (32) can then
be written as

∂
(
|Ψ|2Ω

)
∂t ′

+∇aiJai+∇ai
Jai+∇BJ

B+∇BJ
B
= 0 (36)

where ∇ai ≡
´
M δ/δAai, ∇B ≡

´
M δ/δξB and

Jai =
|Ψ|2

ΨKΨK

{
iÑℓ2Pl
2

ϵijk

(
F k

ab

[
δ lnΨ
δAbj

+
δ lnΨK

δAbj

]
+
ℓ2PlΛ

3
ϵabc

[
1
Ψ

δ2Ψ

δAckδAbj
+
δ lnΨ
δAck

δ lnΨK

δAbj

− 1
ΨK

δ2ΨK

δAckδAbj
+ 2

δ lnΨK

δAck

δ lnΨK

δAbj

])
+ 2Ñℓ2Pl

(
D̂aξ

)
A
σABi

δ lnΨ
δξB

−Nb
ℓ2Pl
2κℏ

F b
ai

}
(37)

JB =2
ℓ2Pl|Ψ|2

ΨKΨK

δ lnΨK

δAai
Ñ
(
D̂aξ

)
A
σABi . (38)

Note that equation (36) is not yet a satisfactory continuity equation, as there are ‘temporal

flux’ terms JB, J
B
corresponding to ξB, ξ

B
. We can absorb them into the current density term

by redefining the time parameter t ′ → t such that

δξB

δt
= Nb

(
D̂bξ

)B
+ 2ℓ2Pl

δ lnΨK

δAai
Ñ
(
D̂aξ

)
A
σABi . (39)

Equation (36) can then be written as the continuity equation

∂
(
|Ψ|2Ω

)
∂t

+∇aiJai+∇ai
Jai = 0 (40)

where Jai is given by (37).
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4.2. Physical interpretation

Let us consider the physical interpretation given the weight factor (35) and the continuity
equation (40). Let us first take the question of normalisability of the quantum state.

4.2.1. Normalisability. It was shown by the authors of [6], that Ψ[A, ξ] = ΨK[A]Φ[A, ξ] is a
good ansatz for the gravitational-fermionic WDW equation. The continuity equation (40) can
be rewritten as

∂|Φ|2

∂t
+∇aiJai+∇ai

Jai = 0 (41)

which makes it evident that the non-normalisable CSK state ΨK is factored out of the current
density. Therefore, to interpret (41) as a probability conservation equation, the normalisability
condition is imposed on Φ[A, ξ]—not the full quantum state Ψ[A, ξ]. Using (30), we can show
that Φ[A, ξ] follows the Schrodinger equation

ˆ
M

1
ΨK

δ

δAai

{[
Ñ
ϵijk
2

δ

δAbj

(
F k

ab+
Λ

3
ϵabc

δ

δAck

)
+ iNb

F b
ai

2

]
ΨKΦ[A, ξ]

}
+

ˆ
M

δ

δAai

[
−2Ñ

(
D̂aξ

)
A
σABi i

δ

δξB
Φ[A, ξ]

]
= i

∂Φ[A, ξ]
∂t

(42)

with respect to the time parameter t in (39). We further discuss probabilities in section (5).

4.2.2. Guidance equations. The conceptual role of the continuity equation derived from
the quantum state, in pilot-wave theory, is to define the guidance equation. Using (37) and the
standard pilot-wave prescription for the ansatzΨ[A, ξ] = ΨK[A]Φ[A, ξ], the guidance equation

δAai
δt

≡ Jai
|Φ|2

=
iÑℓ2Pl
2

δ lnΨK

δAbj
ϵijk

(
2F k

ab+ ℓ2PlΛϵabc
δ lnΨK

δAck

)
−Nb

ℓ2Pl
2κℏ

F b
ai

+
iÑℓ2Pl
2

ϵijk

(
2F k

ab
δ lnΦ
δAbj

+
ℓ2PlΛ

3
ϵabc

[
2
δ lnΦ
δAbj

δ lnΨK

δAck
+

1
Φ

δ2Φ

δAckδAbj

])
+ 2Ñℓ2Pl

(
D̂aξ

)
A
σABi

δ lnΦ
δξB

(43)

determines the evolution of the Ashtekar connection with respect to the fermionic time t. We
note that the first line of (43) is the classical equation of motion for the connection with Ebj sub-
stituted by δ lnΨK/δAbj. This form of Ebj can be shown to give the classical de Sitter solution
[21]. The first term in the second line of (43) contains the quantum corrections to the de Sitter
solution, whereas the second term contains the quantum contribution from the fermionic inter-
action with ΠB given by δ lnΦ/δξB. Also note that equation (43) is nonlocal in the sense that
the evolution of the connection at a particular point in physical space generally depends upon
the value of the connection at other points in physical space, similar to equation (19).

The guidance equation for the fermion is given by equation (39). We note that (39)
resembles the classical equation of motion with Eai substituted by δ lnΨK/δAai. However, as
Aai is guided by the full quantum stateΨ[A, ξ] in (43), the evolution of the fermion is implicitly
state dependent and shows quantum behaviour.

9
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4.2.3. Reality conditions. We impose the reality conditions at the level of the guidance
equation (43). We first note that, in the Ashtekar formulation of classical general relativity,
the following conditions

Aai+Aai = 2Γai (44)

Eai = Eai (45)

have to be imposed to recover the real sector (with real metric), where Γ ai is the 3D spin
connection. In the orthodox quantum formulation of canonical quantum gravity, the reality
conditions are generalised to the operator conditions

Âai+ Â†
ai = 2Γ̂ai (46)

Êai = Ê†
ai. (47)

We pursue here an approach based on pilot-wave theory to generalising the classical reality
conditions (44) and (45). We demand that these conditions be met for the configuration-space
trajectory determined by the guidance equation (43). This allows us to extract the real sector
for an arbitrary solution to the Schrodinger-like equation (30), regardless of normalisability
issues.

It is clear from (43) that the first reality condition (44) will be trivially satisfied for any
arbitrary solution Ψ if we define

2
δΓai (t)
δt

≡ δ

δt

(
Aai (t)+Aai (t)

)
(48)

at all points of the system trajectory. Let us next consider the second reality condition (45).
Using the definition

Γai =
1
2
ϵijkE

bk
(
Eja,b−Ejb,a+EcjE

l
aE

l
c,b

)
+

1
4
ϵijkE

bk

(
2Eja

E,b
E

−Ejb
E,a
E

)
(49)

where E≡ det(E), we can solve for Eai(t) given Γai(t) along the system trajectory from (48).
Since the Γ ai is real, (49) admits real solutions and the second reality condition (45) is thereby
satisfied.

Lastly, we can obtain the extrinsic curvature

Kai =
1

2Ñ

(
∂Ni
∂xa

+
∂Na
∂xi

− ∂gai
∂t

)
(50)

along the system trajectory from the imaginary part of the connection as

Aai = Γai− iKai. (51)

5. Probabilities, unitarity and mini-superspace

5.1. Quantum-mechanical unitarity

Let us first consider whether the quantum-mechanical notion of unitarity is applicable. We
note that since the non-normalisable ΨK[A] is factored out of the current density in (41), it
is possible that Φ[A, ξ] = Ψ[A, ξ]/ΨK[A] can be appropriately normalised. In that case, the

10
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continuity equation (41) may be interpreted as a statement of local probability conservation,
analogous to the continuity equation in orthodox quantummechanics. In addition, if the current
Jai → 0 at large |Aai|, then probabilities remain normalised5 with respect to the fermionic time
and our system may be said to be quantum-mechanical unitary. We leave it to future work to
determine whether such Φ[A, ξ] exist.

In the following, we also explore a generalised notion of unitarity that agrees with quantum-
mechanical unitarity and, further, is applicable to non-normalisable Φ[A, ξ].

5.2. Pilot-wave unitarity

The key idea here is that pilot-wave theory posits a probability continuity equation that is
logically independent [11, 12, 30–33] of the continuity equation derived from the quantum
state (41), whose role is only to define the guidance equation (43) for a single configuration.
We may, therefore, consider an initial normalised density of configurations ρ[A,A, ξ,ξ,0] for a
theoretical ensemble6 regardless of the normalisability of Φ[A, ξ] [34]. The time evolution of
the density is given by

∂ρ
[
A,A, ξ,ξ, t

]
∂t

+∇ck

(
ρ
[
A,A, ξ,ξ, t

] δAck
δt

)
+∇ck

(
ρ
[
A,A, ξ,ξ, t

] δAck
δt

)
+∇B

(
ρ
[
A,A, ξ,ξ, t

] δξB
δt

)
+∇B

(
ρ
[
A,A, ξ,ξ, t

] δξB
δt

)
= 0. (52)

Equations (41) and (52) imply that

d
dt

ρ
[
A,A, ξ,ξ, t

]
|Φ[A, ξ] |2

= 0 (53)

where

d
dt

≡ ∂

∂t
+

ˆ
M

δAai
δt

δ

δAai
+

ˆ
M

δAai
δt

δ

δAai
+

ˆ
M

δξB

δt
δ

δξB
+

ˆ
M

δξ
B

δt
δ

δξ
B (54)

denotes the total time derivative operator. The relation (53) implies that the ratio of
ρ[A,A, ξ,ξ, t] to |Φ[A, ξ]|2 remains constant along the system trajectories on configuration
space. A density ρ[A,A, ξ,ξ, t] that is equal to |Φ[A, ξ]|2 over an evolving compact support
of the configuration space has been defined to be in pilot-wave equilibrium [34], which is a
generalisation of the notion of quantum equilibrium [30–33]. For example, an initial density
(up to normalisation factor)

ρ
[
A,A, ξ,ξ,0

]
=

{
|Φ[A, ξ] |2, (A, ξ) ∈ Ω0

0, (A, ξ) ∈ C \Ω0
(55)

5 In general, the normalisation of a density ρ(⃗x, t) evolving via the continuity equation ∂ρ
∂t

+ ∇⃗ · (ρ⃗v) = 0 is preserved
if the current ρ⃗v→ 0 as |x| →∞.
6 Since pilot-wave theory has a single-world ontology, probabilities here can only refer to a single universe. For
example, we can consider agents having incomplete knowledge about the universe. Such agents may assign probab-
ilities to the possible initial configurations of the universe for a theoretical ensemble.
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whereΩ0 ≡ {(A, ξ)|ρ[A,A, ξ,ξ,0]> 0} is a compact support on the configuration space C, will
evolve to

ρ
[
A,A, ξ,ξ, t

]
=

{
|Φ[A, ξ] |2, (A, ξ) ∈ Ωt

0, (A, ξ) ∈ C \Ωt
(56)

where Ωt ≡ {(A, ξ)|ρ[A,A, ξ,ξ, t]> 0} is the time evolved support on the configuration space.
The behaviour of such densities has been explored for the case of harmonic oscillators in [34].

Let us next consider the notion of unitarity from a pilot-wave perspective. We defineΦ[A, ξ]
to be a unitary state if and only if

lim
|Ack|→∞

ρ
[
A,A, ξ,ξ, t

] δAck
δt

= 0 ∀c,k (57)

for any initially normalised ρ[A,A, ξ,ξ,0] evolving via (52) at any finite t> 0, and where
δAck/δt is determined from (43). As δξB/δt∝ ξB from (39), the condition (57) implies that
ρ[A,A, ξ,ξ, t] remains normalised with time. Clearly, the pilot-wave notion of unitarity (57) is
applicable regardless of the normalisability of Φ[A, ξ]. Note that a unitary non-normalisable
state is not identical to a bound non-normalisable state [34].

We now explore the behaviour of solutions to the Hamiltonian constraint in the context of
this discussion. This is a technically challenging question to investigate in full generality, so
we address this here in the mini-superspace (Friedmann–Robertson–Walker or FRW) approx-
imation, which is relevant for quantum cosmology.

5.3. Mini-superspace

Assuming homogeneity and isotropy, we take Ack(⃗x) = iAδck and ξB(⃗x) = ξ. This implies that

F k
ab =−κA2ϵkab (58)(

D̂aξ
)
A
= κiAτCaAξC. (59)

The Hamiltonian constraint ĤΨ = 0 simplifies to

3i
∂2

(
A2Ψ

)
∂A2

+ ℏΛ
∂3Ψ

∂A3
+ 2AτCaAξCσ

aAB ∂

∂A
∂Ψ

∂ξB
+ τCaAξCσ

aAB ∂Ψ

∂ξB
= 0 (60)

As such, equation (60) does not have separable solutions in A, ξ.

5.3.1. Approximately separable solutions. Let us make the simplifying assumption that the
last term in (60) is small, which we will justify later. We then look for separable solutions
Ψ(A, ξ) = χ(A)ϕ(ξ). For such solutions, (60) implies

3iϕ
Aχ ′

d2
(
A2χ

)
dA2

+
ℏΛϕ
Aχ ′

d3χ
dA3

+ 2τCaAξCσ
aAB dϕ

dξB
= 0. (61)

Clearly, the first two terms depend only on A whereas the third term depends only on ξ. Let us
introduce a separation constant E (in general complex) such that

3i
Aχ ′

d2
(
A2χ

)
dA2

+
ℏΛ
Aχ ′

d3χ
dA3

= E (62)
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2τCaAξCσ
aAB dϕ

dξB
=−Eϕ. (63)

The differential equation for ϕ can be written as

ξ
dϕ
dξ

=−iE0ϕ (64)

where E0 = 2E/(σ+
aAσ

aA+ +σ−
aAσ

aA+ +σ+
aAσ

aA− +σ−
aAσ

aA−) and we have used τ ≡−iσ/2.
The general solution to (64) is ϕ(ξ) = ce−iE0 lnξ, where c is an arbitrary constant. We note
the resemblance of this solution to the time-dependent part e−iEt/ℏ of an energy eigenstate
corresponding to energy E.

The approximate solution to (62) for χ is

χ(A) = c1A
− 9+

√
9+18iE−E2+Ei

6 + c2A
− 9−

√
9+18iE−E2+Ei

6 (65)

where we have neglected the third-derivative term multiplied by ℏΛ. Note that we can select
E in (65) such that the last term in (60) is indeed small, as assumed.

5.3.2. Unitarity and torsion. The current (37) can be rewritten as

Jai = |Φ|2
{
iÑℓ2Pl
2

ϵijk

(
ℓ2PlΛ

3
ϵabc

1
Ψ

δ2Ψ

δAckδAbj

)
+ 2Ñℓ2Pl

(
D̂aξ

)
A
σABi

δ lnΨ
δξB

−Nb
ℓ2Pl
2κℏ

F b
ai

}
.

(66)

The guidance equation (43) can be shown to reduce to

i
dA
dt

=− Ñℓ2Pl
χ

d
dA

(
ℓ2PlΛ

3
d
dA

)
χ + 2iℏÑEA (67)

for separable solution χ(A)ϕ(ξ) corresponding to E . Suppose that χ(A) = Ad, where d≡
−(9+

√
9+ 18iE −E2 + E i)/6, then (67) becomes

dA
dt

= iÑℓ2Pl

(
ℓ2PlΛ

3
d(d− 1)

A2

)
+ 2ℏÑEA. (68)

Clearly, for large A, dA/dt increases approximately linearly and, using (57), χ(A)ϕ(ξ) is pilot-
wave unitary.

Equation (68) also implies that, in general, A(t) will have both real and imaginary parts.
This implies the presence of both normal and parity-violating torsion [35, 36].

5.3.3. Evolution of the fermionic field. Lastly, the evolution of the fermionic field (39)
becomes

dξB

dt
= iκ

[
9Ñκ

A3
(
τ iCA

)
σABi

Λ
+NaAτBCa

]
ξC. (69)

Equation (69) implies that ξ+ and ξ− will quickly differ, even if ξB = ξ at t= 0.
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6. Discussion

Wehave described an interacting gravitational-fermionic system inAshtekar formulation using
the language of pilot-wave theory.We summarise here the key results of our work and potential
directions for future research.

We have obtained a real time variable for the combined system, without semiclassical
assumptions, by parameterising variation of the fermionic field that depends on the Kodama
state. In both classical and quantum canonical gravity, time disappears and the Hamiltonian
becomes a constraint. Various approaches to define a natural time variable using a matter field
as a clock have been discussed in the literature [37–40]. Our approach analogously uses a fer-
mionic field to define time, but also supplements it with the pilot-wave postulate of a definite
joint configuration for both the clock and the Ashtekar connection. Time is then defined to be a
real variable that naturally parameterises the variation of the definite fermionic field configur-
ation. Both the fermionic field and the Ashtekar connection are quantised in our approach, and
the time variable is well-defined for general solutions to the constraints. The total constraint
is expressed as a Schrodinger equation with respect to the fermionic time. In the future, it will
be interesting to explore the relationship between our approach and the previous approaches
to defining time. Furthermore, our work suggests that the problem of time in quantum gravity
and the problem of preferred global time required to define pilot-wave dynamics are intim-
ately linked. Both are solved simultaneously in our approach, obviating the criticism that the
preferred global time is necessarily ad hoc in pilot-wave theory. For future work, it will be
interesting to apply this approach to the problem of time to scenarios with additional matter
fields coupled to gravity. A straightforward application would be to vary each matter field
and then sum over all to define a partial time derivative of the quantum state, in analogy with
summing over the different spinor components in equation (39).

We have derived a local continuity equation over the configuration space and discussed
unitarity from both quantum-mechanical and pilot-wave perspective. It is interesting that in
the context of the tunnelling wavefunction of the Universe, Vilenkin was able to define a con-
served current for configurations in mini-superspace and it would be interesting to explore the
relationship between our conserved current and his [41, 42]. In our conserved current density,
the non-normalisable Kodama state is found to naturally factor out from the full quantum state.
A natural question that arises for future work is whether the remaining part of the quantum state
can be appropriately normalised, thereby proving quantum-mechanical unitarity. We have also
given a pilot-wave generalisation of the notion of unitarity, which reduces to the quantum-
mechanical notion for normalisable states but is also applicable to non-normalisable states.
We have shown the existence of approximate pilot-wave unitary states in mini-superspace. We
leave for future work whether pilot-wave unitary states exist in general.

We have explored pilot-wave dynamics for the physically relevant quantities in our system.
We have retrieved real spin connection, triad and extrinsic curvature along the system trajectory
in configuration space by imposing the reality conditions at the level of the guidance equation
for the connection. Interestingly, the guidance equation for the connection naturally resolves
into the classical equation of motion, giving us deSitter spacetime as a solution, plus quantum
corrections. We have also shown the existence of pilot-wave equilibrium densities [34], which
lead to Born-rule-like probabilities. It is interesting that we have used commutators to quantise
the fermionic field [27, 28], and this leads to considerable simplicity in interpretation for the
guidance equations. It will be interesting to explore the violation of spin-statistics theorem in
quantum gravity in the future, as this is closely related to the long-standing question of particle
versus field ontology for fermions in pilot-wave theory [23, 24, 43].
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It is important to extract testable cosmological predictions from our approach. We know
that the connection in FRW is the co-moving Horizon, A∼ Ha [35, 36], so that the evolution
of the Horizon may be obtained from the guidance equation and this may yield predictions
in light of the Hubble tension. Such a link would connect non-local dynamics in pilot-wave
theory to the evolution of the Hubble parameter, but this is still speculative.
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