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Two topics, evolving rapidly in separate fields, were combined recently: the out-of-time-ordered correlator
(OTOC) signals quantum-information scrambling in many-body systems. The Kirkwood-Dirac (KD) quasiprob-
ability represents operators in quantum optics. The OTOC was shown to equal a moment of a summed
quasiprobability [Yunger Halpern, Phys. Rev. A 95, 012120 (2017)]. That quasiprobability, we argue, is an
extension of the KD distribution. We explore the quasiprobability’s structure from experimental, numerical, and
theoretical perspectives. First, we simplify and analyze Yunger Halpern’s weak-measurement and interference
protocols for measuring the OTOC and its quasiprobability. We decrease, exponentially in system size, the number
of trials required to infer the OTOC from weak measurements. We also construct a circuit for implementing
the weak-measurement scheme. Next, we calculate the quasiprobability (after coarse graining) numerically
and analytically: we simulate a transverse-field Ising model first. Then, we calculate the quasiprobability
averaged over random circuits, which model chaotic dynamics. The quasiprobability, we find, distinguishes
chaotic from integrable regimes. We observe nonclassical behaviors: the quasiprobability typically has negative
components. It becomes nonreal in some regimes. The onset of scrambling breaks a symmetry that bifurcates
the quasiprobability, as in classical-chaos pitchforks. Finally, we present mathematical properties. We define
an extended KD quasiprobability that generalizes the KD distribution. The quasiprobability obeys a Bayes-type
theorem, for example, that exponentially decreases the memory required to calculate weak values, in certain cases.
A time-ordered correlator analogous to the OTOC, insensitive to quantum-information scrambling, depends on a
quasiprobability closer to a classical probability. This work not only illuminates the OTOC’s underpinnings, but
also generalizes quasiprobability theory and motivates immediate-future weak-measurement challenges.
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Two topics have been flourishing independently: the out-
of-time-ordered correlator (OTOC) and the Kirkwood-Dirac
(KD) quasiprobability distribution. The OTOC signals chaos,
and the dispersal of information through entanglement, in
quantum many-body systems [1–6]. Quasiprobabilities rep-
resent quantum states as phase-space distributions represent
statistical-mechanical states [7]. Classical phase-space distri-
butions are restricted to positive values; quasiprobabilities are
not. The best-known quasiprobability is the Wigner function.
The Wigner function can become negative; the KD quasiprob-
ability, negative and nonreal [8–14]. Nonclassical values flag
contextuality, a resource underlying quantum-computation
speedups [14–20]. Hence, the KD quasiprobability, like the
OTOC, reflects nonclassicality.

Yet, disparate communities use these tools: The OTOC
F (t) features in quantum information theory, high-energy
physics, and condensed matter. Contexts include black holes
within the anti–de Sitter space and conformal-field-theory
(AdS+CFT) duality [1,21–23], weakly interacting field the-
ories [24–27], spin models [1,28], and the Sachdev-Ye-Kitaev
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model [29,30]. The KD distribution features in quantum optics.
Experimentalists have inferred the quasiprobability from weak
measurements of photons [10–13,31–34] and superconducting
qubits [35,36].

The two tools were united in Ref. [37]. The OTOC was
shown to equal a moment of a summed quasiprobability Ãρ :

F (t) = ∂2

∂β ∂β ′ 〈e−(βW+β ′W ′)〉|β,β ′=0. (1)

W and W ′ denote measurable random variables analogous
to thermodynamic work; and β,β ′ ∈ R. The average 〈. . . 〉
is with respect to a sum of quasiprobability values Ãρ(. . .).
Equation (1) resembles Jarzynski’s equality, a fluctuation
relation in nonequilibrium statistical mechanics [38]. Jarzynski
cast a useful, difficult-to-measure free-energy difference�F in
terms of the characteristic function of a probability. Equation
(1) casts the useful, difficult-to-measure OTOC in terms of
the characteristic function of a summed quasiprobability.1 The

1For a thorough comparison of Eq. (1) with Jarzynski’s equality, see
the two paragraphs that follow the proof in Ref. [37].
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OTOC has recently been linked to thermodynamics also in
Refs. [39,40].

Equation (1) motivated definitions of quantities that
deserve study in their own right. The most prominent quantity
is the quasiprobability Ãρ . Ãρ is more fundamental than
F (t): Ãρ is a distribution that consists of many values. F (t)
equals a combination of those values: a derived quantity, a
coarse-grained quantity. Ãρ contains more information than
F (t). This paper spotlights Ãρ and related quasiprobabilities
“behind the OTOC.”

Ãρ , we argue, is an extension of the KD quasiprobabil-
ity. Weak-measurement tools used to infer KD quasiproba-
bilities can be applied to infer Ãρ from experiments [37].
Upon measuring Ãρ , one can recover the OTOC. Alternative
OTOC-measurement proposals rely on Lochshmidt echoes
[41], interferometry [37,41–43], clocks [44], particle-number
measurements of ultracold atoms [43,45,46], and two-point
measurements [39]. Initial experiments have begun the push
toward characterizing many-body scrambling: OTOCs of an
infinite-temperature four-site NMR system have been mea-
sured [47]. OTOCs of symmetric observables have been mea-
sured with infinite-temperature trapped ions [48] and in nuclear
spin chains [49]. Weak measurements offer a distinct toolkit,
opening new platforms and regimes to OTOC measurements.
The weak-measurement scheme in Ref. [37] is expected to
provide a near-term challenge for superconducting qubits
[35,50–55], trapped ions [56–62], ultracold atoms [63], cavity
quantum electrodynamics (QED) [64,65], and perhaps NMR
[66,67].

We investigate the quasiprobability Ãρ that “lies behind”
the OTOC. The study consists of three branches: We discuss
experimental measurements, calculate (a coarse grained)
Ãρ , and explore mathematical properties. Not only does
quasiprobability theory shed new light on the OTOC, but the
OTOC also inspires questions about quasiprobabilities and
motivates weak-measurement experimental challenges.

The paper is organized as follows. In a Technical Introduc-
tion, we review the KD quasiprobability, the OTOC, the OTOC
quasiprobability Ãρ , and schemes for measuring Ãρ . We also
introduce our setup and notation.

Next, we discuss experimental measurements. We intro-
duce a coarse graining ˜Aρ of Ãρ . The coarse graining
involves a “projection trick” that decreases, exponentially
in system size, the number of trials required to infer F (t)
from weak measurements. We evaluate pros and cons of
the quasiprobability-measurement schemes in Ref. [37]. We
also compare our schemes with alternative F (t)-measurement
schemes [41,42,44]. We then present a circuit for weakly
measuring a qubit system’s ˜Aρ . Finally, we show how to infer
the coarse grained ˜Aρ from alternative OTOC-measurement
schemes (e.g., [41]).

Sections III and IV feature calculations of ˜Aρ . First,
we numerically simulate a transverse-field Ising model.

˜Aρ changes significantly, we find, over time scales rel-
evant to the OTOC. The quasiprobability’s behavior dis-
tinguishes nonintegrable from integrable Hamiltonians. The
quasiprobability’s negativity and nonreality remain robust
with respect to substantial quantum interference. We then
calculate an average, over Brownian circuits, of ˜Aρ . Brow-

nian circuits model chaotic dynamics: The system is as-
sumed to evolve, at each time step, under random two-qubit
couplings [68–71].

A final “theory” section concerns mathematical properties
and physical interpretations of Ãρ . Ãρ shares some, though
not all, of its properties with the KD distribution. The OTOC
motivates a generalization of a Bayes-type theorem obeyed by
the KD distribution [14,72–75]. The generalization exponen-
tially shrinks the memory required to compute weak values,
in certain cases. The OTOC also motivates a generalization
of decompositions of quantum states ρ. This decomposition
property may help experimentalists assess how accurately
they prepared the desired initial state when measuring F (t).
A time-ordered correlator FTOC(t) analogous to F (t), we
show next, depends on a quasiprobability that can reduce to
a probability. The OTOC quasiprobability lies farther from
classical probabilities than the TOC quasiprobability, as the
OTOC registers quantum-information scrambling that FTOC(t)
does not. Finally, we recall that the OTOC encodes three time
reversals. OTOCs that encode more are moments of sums of
“longer” quasiprobabilities. We conclude with theoretical and
experimental opportunities.

We invite readers to familiarize themselves with the tech-
nical review, then to dip into the sections that interest them
most. The technical review is intended to introduce condensed-
matter, high-energy, and quantum-information readers to the
KD quasiprobability and to introduce quasiprobability and
weak-measurement readers to the OTOC. Armed with the
technical review, experimentalists may wish to focus on Sec. II
and perhaps Sec. III. Adherents of abstract theory may prefer
Sec. V. The computationally minded may prefer Secs. III and
IV. The paper’s modules (aside from the technical review) are
independently accessible.

I. TECHNICAL INTRODUCTION

This section consists of three parts. In Sec. I A, we overview
the KD quasiprobability. Section I B introduces our setup
and notation. In Sec. I C, we review the OTOC and its
quasiprobability Ãρ . We overview also the weak-measurement
and interference schemes for measuring Ãρ and F (t).

The quasiprobability section, I A, provides background
for quantum-information, high-energy, and condensed-matter
readers. The OTOC section, I C, targets quasiprobability and
weak-measurement readers. We encourage all readers to study
the setup (Sec. I B), as well as Ãρ and the schemes for
measuring Ãρ (Sec. I D).

A. KD quasiprobability in quantum optics

The Kirkwood-Dirac quasiprobability is defined as follows.
Let S denote a quantum system associated with a Hilbert space
H. Let {|a〉} and {|f 〉} denote orthonormal bases for H. Let
B(H) denote the set of bounded operators defined on H, and
let O ∈ B(H). The KD quasiprobability

Ã
(1)
O (a,f ) := 〈f |a〉〈a|O|f 〉, (2)

regarded as a function of a and f , contains all the information
in O, if 〈a|f 〉 �= 0 for all a,f . Density operators O = ρ are
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often focused on in the literature and in this paper. This section
concerns the context, structure, and applications of Ã

(1)
O (a,f ).

We set the stage with phase-space representations of quan-
tum mechanics, alternative quasiprobabilities, and historical
background. Equation (2) facilitates retrodiction, or inference
about the past, reviewed in Sec. I A 2. How to decompose an
operator O in terms of KD-quasiprobability values appears in
Sec. I A 3. The quasiprobability has mathematical properties
reviewed in Sec. I A 4.

Much of this section parallels Sec. V, our theoretical
investigation of the OTOC quasiprobability. More background
appears in Ref. [14].

1. Phase-space representations, alternative
quasiprobabilities, and history

Phase-space distributions form a mathematical toolkit ap-
plied in Liouville mechanics [76]. Let S denote a system of
6N degrees of freedom (DOFs). An example system consists
of N particles, lacking internal DOFs, in a three-dimensional
space. We index the particles with i and let α = x,y,z. The
αth component qα

i of particle i’s position is conjugate to the
αth component pα

i of the particle’s momentum. The variables
qα

i and pα
i label the axes of phase space.

Suppose that the system contains many DOFs: N � 1.
Tracking all the DOFs is difficult. Which phase-space point S

occupies, at any instant, may be unknown. The probability that,
at time t , S occupies an infinitesimal volume element localized
at (qx

1 , . . . ,pz
N ) is ρ({qα

i },{pα
i }; t) d3Nq d3Np. The phase-

space distribution ρ({qα
i },{pα

i }; t) is a probability density.
qα

i and pα
i seem absent from quantum mechanics (QM),

prima facie. Most introductions to QM cast quantum states in
terms of operators, Dirac kets |ψ〉, and wave functions ψ(x).
Classical variables are relegated to measurement outcomes and
to the classical limit. Wigner, Moyal, and others represented
QM in terms of phase space [7]. These representations are used
most in quantum optics.

In such a representation, a quasiprobability density re-
places the statistical-mechanical probability density ρ.2 Yet,
quasiprobabilities violate axioms of probability [16]. Proba-
bilities are nonnegative, for example. Quasiprobabilities can
assume negative values, associated with nonclassical physics
such as contextuality [14–18,20], and nonreal values. Relaxing
different axioms leads to different quasiprobabilities. Different
quasiprobabilities correspond also to different orderings of
noncommutative operators [9]. The best-known quasiproba-
bilities include the Wigner function, the Glauber-Sudarshan P

representation, and the Husimi Q function [7].
The KD quasiprobability resembles a little brother of theirs,

whom hardly anyone has heard of [77]. Kirkwood and Dirac
defined the quasiprobability independently in 1933 [8] and
1945 [9]. Their finds remained under the radar for decades. Ri-
haczek rediscovered the distribution in 1968, in classical-signal

2We will focus on discrete quantum systems, motivated by a spin-
chain example. Discrete systems are governed by quasiprobabilities,
which resemble probabilities. Continuous systems are governed by
quasiprobability densities, which resemble probability densities. Our
quasiprobabilities can be replaced with quasiprobability densities, and
our sums can be replaced with integrals, in, e.g., quantum field theory.

processing [78,79]. (The KD quasiprobability is sometimes
called “the Kirkwood-Rihaczek distribution.”) The quantum
community’s attention has revived recently. Reasons include
experimental measurements, mathematical properties, and ap-
plications to retrodiction and state decompositions.

2. Bayes-type theorem and retrodiction
with the KD quasiprobability

Prediction is inference about the future. Retrodiction is
inference about the past. One uses the KD quasiprobability
to infer about a time t ′, using information about an event that
occurred before t ′ and information about an event that occurred
after t ′. This forward-and-backward propagation evokes the
OTOC’s out-of-time ordering.

We borrow notation from, and condense the explanation in,
Ref. [14]. Let S denote a discrete quantum system. Consider
preparing S in a state |i〉 at time t = 0. Suppose that S evolves
under a time-independent Hamiltonian that generates the
family Ut of unitaries. Let F denote an observable measured at
time t ′′ > 0. Let F = ∑

f f |f 〉〈f | be the eigendecomposition,
and let f denote the outcome.

Let A = ∑
a a|a〉〈a| be the eigendecomposition of an ob-

servable that fails to commute with F . Let t ′ denote a time in
(0,t ′′). Which value can we most reasonably attribute to the
system’s time t ′ A, knowing that S was prepared in |i〉 and that
the final measurement yielded f ?

Propagating the initial state forward to time t ′ yields |i ′〉 :=
Ut ′ |i〉. Propagating the final state backward yields |f ′〉 :=
U

†
t ′′−t ′ |f 〉. Our best guess about A is the weak value [36,73–

75,80–82]

Aweak(i,f ) := Re

( 〈f ′|A|i ′〉
〈f ′|i ′〉

)
. (3)

The real part of a complex number z is denoted by Re(z). The
guess’s accuracy is quantified with a distance metric (Sec. V B)
and with comparisons to weak-measurement data.

Aharonov et al. discovered weak values in 1988 [72]. Weak
values be anomalous, or strange:Aweak can exceed the greatest
eigenvalue amax of A and can dip below the least eigenvalue
amin. Anomalous weak values concur with negative quasiprob-
abilities and nonclassical physics [14,17,18,83,84]. Debate has
surrounded weak values’ role in quantum mechanics [85–91].

The weak value Aweak, we will show, depends on the
KD quasiprobability. We replace the A in Eq. (3) with its
eigendecomposition. Factoring out the eigenvalues yields

Aweak(i,f ) =
∑

a

a Re

( 〈f ′|a〉〈a|i ′〉
〈f ′|i ′〉

)
. (4)

The weight Re(. . .) is a conditional quasiprobability. It re-
sembles a conditional probability, the likelihood that, if |i〉
was prepared and the measurement yielded f , a is the value
most reasonably attributable to A. Multiplying and dividing
the argument by 〈i ′|f ′〉 yields

p̃(a|i,f ) := Re(〈f ′|a〉〈a|i ′〉〈i ′|f ′〉)
|〈f ′|i ′〉|2 . (5)

Substituting into Eq. (4) yields

Aweak(i,f ) =
∑

a

a p̃(a|i,f ). (6)
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Equation (6) illustrates why negative quasiprobabili-
ties concur with anomalous weak values. Suppose that
p̃(a|i,f ) � 0 ∀ a. The triangle inequality, followed by the
Cauchy-Schwarz inequality, implies

|Aweak(i,f )| �
∣∣∣∣∣∑

a

a p̃(a|i,f )

∣∣∣∣∣ (7)

�
∑

a

|a| · |p̃(a|i,f )| (8)

� |amax|
∑

a

|p̃(a|i,f )| (9)

= |amax|
∑

a

p̃(a|i,f ) (10)

= |amax|. (11)

The penultimate equality follows from p̃(a|i,f ) � 0. Sup-
pose, now, that the quasiprobability contains a negative value
p̃(a−|i,f ) < 0. The distribution remains normalized. Hence,
the rest of the p̃ values sum to >1. The right-hand side of (9)
exceeds |amax|.

The numerator of Eq. (5) is the Terletsky-Margenau-Hill
(TMH) quasiprobability [73,92–94]. The TMH distribution is
the real part of a complex number. That complex generaliza-
tion,

〈f ′|a〉〈a|i ′〉〈i ′|f ′〉, (12)

is the KD quasiprobability (2).
We can generalize the retrodiction argument to arbitrary

states ρ [95]. Let D(H) denote the set of density operators
(unit-trace linear positive-semidefinite operators) defined on
H. Let ρ = ∑

i pi |i〉〈i| ∈ D(H) be a density operator’s eigen-
decomposition. Let ρ ′ := Ut ′ρU

†
t ′ . The weak value Eq. (3)

becomes

Aweak(ρ,f ) := Re

( 〈f ′|Aρ ′|f ′〉
〈f ′|ρ ′|f ′〉

)
. (13)

Let us eigendecompose A and factor out
∑

a a. The eigenval-
ues are weighted by the conditional quasiprobability

p̃(a|ρ,f ) = Re(〈f ′|a〉〈a|ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 . (14)

The numerator is the TMH quasiprobability forρ. The complex
generalization

Ã(1)
ρ (a,f ) = 〈f ′|a〉〈a|ρ ′|f ′〉 (15)

is the KD quasiprobability (2) for ρ.3 We rederive (15), via an
operator decomposition, next.

3. Decomposing operators in terms
of KD-quasiprobability coefficients

The KD distribution can be interpreted not only in terms
of retrodiction, but also in terms of operator decompositions
[10,11]. Quantum-information scientists decompose qubit

3The A in the quasiprobability Ãρ should not be confused with the
observable A.

states in terms of Pauli operators. Let σ = σx x̂ + σy ŷ + σ zẑ
denote a vector of the one-qubit Paulis. Let n̂ ∈ R3 denote
a unit vector. Let ρ denote any state of a qubit, a two-level
quantum system. ρ can be expressed as ρ = 1

2 (1 + n̂ · σ ) . The
identity operator is denoted by 1. The n̂ components n	 con-
stitute decomposition coefficients. The KD quasiprobability
consists of coefficients in a more general decomposition.

Let S denote a discrete quantum system associated with a
Hilbert space H. Let {|f 〉} and {|a〉} denote orthonormal bases
for H. Let O ∈ B(H) denote a bounded operator defined on
H. Consider operating on each side of O with a resolution of
unity:

O = 1O1 =
(∑

a

|a〉〈a|
)
O

⎛
⎝∑

f

|f 〉〈f |
⎞
⎠ (16)

=
∑
a,f

|a〉〈f | 〈a|O|f 〉. (17)

Suppose that every element of {|a〉} has a nonzero overlap with
every element of {|f 〉}:

〈f |a〉 �= 0 ∀ a,f. (18)

Each term in Eq. (17) can be multiplied and divided by the
inner product:

O =
∑
a,f

|a〉〈f |
〈f |a〉 〈f |a〉〈a|O|f 〉. (19)

Under condition (18), { |a〉〈f |
〈f |a〉 } forms an orthonormal basis

for B(H) . [The orthonormality is with respect to the Hilbert-
Schmidt inner product. LetO1,O2 ∈ B(H). The operators have
the Hilbert-Schmidt inner product (O1,O2) = Tr(O†

1O2).] The
KD quasiprobability 〈f |a〉〈a|O|f 〉 consists of the decompo-
sition coefficients.

Condition (18) is usually assumed to hold [10,11,34]. In
Refs. [10,11], for example, {|a〉〈a|} and {|f 〉〈f |} manifest as
the position and momentum eigenbases {|x〉} and {|p〉}. Let
|ψ〉 denote a pure state. Let ψ(x) and ψ̃(p) represent |ψ〉
relative to the position and momentum eigenbases. The KD
quasiprobability for ρ = |ψ〉〈ψ | has the form

Ã
(1)
|ψ〉〈ψ |(p,x) = 〈x|p〉〈p|ψ〉〈ψ |x〉 (20)

= e−ixp/h̄

√
2πh̄

ψ̃(p) ψ∗(x). (21)

The OTOC motivates a relaxation of condition (18) (Sec. V C).
[Although assumed in the operator decomposition (19), and
assumed often in the literature, condition (18) need not hold in
arbitrary KD-quasiprobability arguments.]

4. Properties of the KD quasiprobability

The KD quasiprobability shares some, but not all, of its
properties with other quasiprobabilities. The notation below is
defined as it has been throughout Sec. I A.

Property 1. The KD quasiprobability Ã
(1)
O (a,f ) maps

B(H) × {a} × {f } to C . The domain is a composition of the
set B(H) of bounded operators and two sets of real numbers.
The range is the set C of complex numbers, not necessarily the
set R of real numbers.
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The Wigner function assumes only real values. Only by
dipping below zero can the Wigner function deviate from
classical probabilistic behavior. The KD distribution’s nega-
tivity has the following physical significance: imagine pro-
jectively measuring two (commuting) observables, A and
B, simultaneously. The measurement has some probability
p(a; b) of yielding the valuesa andb. Now, suppose thatAdoes
not commute with B. No joint probability distribution p(a; b)
exists. Infinitely precise values cannot be ascribed to noncom-
muting observables simultaneously. Negative quasiprobability
values are not observed directly: observable phenomena are
modeled by averages over quasiprobability values. Negative
values are visible only on scales smaller than the physical
coarse-graining scale. But, negativity causes observable ef-
fects, visible in sequential measurements. Example effects
include anomalous weak values [14,17,18,72,83,84] and vi-
olations of Leggett-Garg inequalities [96,97].

Unlike the Wigner function, the KD distribution can assume
nonreal values. Consider measuring two noncommuting ob-
servables sequentially. How much does the first measurement
affect the second measurement’s outcome? This disturbance
is encoded in the KD distribution’s imaginary component
[98–101].

Property 2. Summing Ã(1)
ρ (a,f ) over a yields a probability

distribution. So does summing Ã(1)
ρ (a,f ) over f .

Consider substituting O = ρ into Eq. (2). Summing over
a yields 〈f |ρ|f 〉. This inner product equals a probability, by
Born’s rule.

Property 3. The KD quasiprobability is defined as in Eq. (2)
regardless of whether {a} and {f } are discrete.

The KD distribution and the Wigner function were defined
originally for continuous systems. Discretizing the Wigner
function is less straightforward [16,20].

Property 4. The KD quasiprobability obeys an analog of
Bayes’ theorem, Eq. (5).

Bayes’ theorem governs the conditional probability p(f |i)
that an event f will occur, given that an event i has occurred.
p(f |i) is expressed in terms of the conditional probability
p(i|f ) and the absolute probabilities p(i) and p(f ):

p(f |i) = p(i|f ) p(f )

p(i)
. (22)

Equation (22) can be expressed in terms of jointly condi-
tional distributions. Let p(a|i,f ) denote the probability that an
event a will occur, given that an event i occurred and that f

occurred subsequently. p(a,f |i) is defined similarly. What is
the joint probability p(i,f,a) that i, f , and a will occur? We
can construct two expressions:

p(i,f,a) = p(a|i,f ) p(i,f ) = p(a,f |i) p(i). (23)

The joint probability p(i,f ) equals p(f |i) p(i). This p(i)
cancels with the p(i) on the right-hand side of Eq. (23). Solving
for p(a|i,f ) yields Bayes’ theorem for jointly conditional
probabilities,

p(a|i,f ) = p(a,f |i)
p(f |i) . (24)

Equation (5) echoes Eq. (24). The KD quasiprobability’s
Bayesian behavior [12,100] has been applied to quantum state

1 N2 …

W = σz ⊗ 1⊗(N−1)
V = 1⊗(N−1) ⊗ σx

FIG. 1. Spin-chain example. A spin chain exemplifies the quan-
tum many-body systems characterized by the out-of-time-ordered
correlator (OTOC). We illustrate with a one-dimensional chain of N

spin- 1
2 degrees of freedom. The vertical red bars mark the sites. The

dotted red arrows illustrate how spins can point in arbitrary directions.
The OTOC is defined in terms of local unitary or Hermitian operators
W and V . Example operators include single-qubit Paulis σx and σ z

that act nontrivially on opposite sides of the chain.

tomography [10,11,13,101–104] and to quantum foundations
[98].

Having reviewed the KD quasiprobability, we approach the
extended KD quasiprobability behind the OTOC. We begin by
concretizing our setup, then reviewing the OTOC.

B. Setup

This section concerns the setup and notation used through-
out the rest of this paper. Our framework is motivated by
the OTOC, which describes quantum many-body systems.
Examples include black holes [1,30], the Sachdev-Ye-Kitaev
model [29,30], other holographic systems [21–23], and spin
chains. We consider a system S associated with a Hilbert
space H of dimensionality d. The system evolves under a
Hamiltonian H that might be nonintegrable or integrable. H

generates the time-evolution operator U := e−iH t .

We will have to sum or integrate over spectra. For con-
creteness, we sum, supposing that H is discrete. A spin-chain
example, discussed next, motivates our choice. Our sums can
be replaced with integrals unless, e.g., we evoke spin chains
explicitly.

We will often illustrate with a one-dimensional (1D) chain
of spin- 1

2 DOFs. Figure 1 illustrates the chain, simulated
numerically in Sec. III. Let N denote the number of spins.
This system’s H has dimensionality d = 2N .

We will often suppose that S occupies, or is initialized to,
a state

ρ =
∑

j

pj |j 〉〈j | ∈ D(H). (25)

The set of density operators defined on H is denoted by
D(H), as in Sec. I A. Orthonormal eigenstates are indexed
by j ; eigenvalues are denoted by pj . Much literature focuses
on temperature-T thermal states e−H/T /Z. (The partition
function Z normalizes the state.) We leave the form of ρ

general, as in Ref. [37].
The OTOC is defined in terms of local operators W and

V . In the literature, W and V are assumed to be unitary
and/or Hermitian. Unitarity suffices for deriving the results
in Ref. [37], as does Hermiticity. Unitarity and Hermiticity are
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assumed there, and here, for convenience.4 In our spin-chain
example, the operators manifest as one-qubit Paulis that act
nontrivially on opposite sides of the chain, e.g., W = σ z ⊗
1⊗(N−1), and V = 1⊗(N−1) ⊗ σx . In the Heisenberg picture,
W evolves as W(t) := U †WU .

The operators eigendecompose as

W =
∑

w	,αw	

w	

∣∣w	,αw	

〉 〈
w	,αw	

∣∣ (26)

and

V =
∑
v	,λv	

v	

∣∣v	,λv	

〉 〈
v	,λv	

∣∣. (27)

The eigenvalues are denoted by w	 and v	. The degeneracy
parameters are denoted by αw	

and λv	
. Recall thatW and V are

local. In our example,W acts nontrivially on just one of N � 1
qubits. Hence, W and V are exponentially degenerate in N .
The degeneracy parameters can be measured: some nondegen-
erate Hermitian operator W̃ has eigenvalues in a one-to-one
correspondence with the αw	

’s. A measurement of W and W̃
outputs a tuple (w	,αw	

). We refer to such a measurement as
“a W̃ measurement,” for conciseness. Analogous statements
concern V and a Hermitian operator Ṽ . Section II A introduces
a trick that frees us from bothering with degeneracies.

C. Out-of-time-ordered correlator

Given two unitary operators W and V , the out-of-time-
ordered correlator is defined as

F (t) := 〈W†(t)V †W(t)V 〉 ≡ Tr(ρW†(t)V †W(t)V ). (28)

This object reflects the degree of noncommutativity of V and
the Heisenberg operator W(t). More precisely, the OTOC
appears in the expectation value of the squared magnitude of
the commutator [W(t),V ],

C(t) := 〈[W(t),V ]†[W(t),V ]〉 = 2 − 2 Re(F (t)). (29)

Even if W and V commute, the Heisenberg operator W(t)
generically does not commute with V at sufficiently late times.

An analogous definition involves Hermitian W and V . The
commutator’s square magnitude becomes

C(t) = −〈[W(t),V ]2〉. (30)

This squared commutator involves TOC (time-ordered-
correlator) and OTOC terms. The TOC terms take the
forms 〈VW(t)W(t)V 〉 and 〈W(t)V VW(t)〉. [Technically,
〈VW(t)W(t)V 〉 is time ordered. 〈W(t)V VW(t)〉 behaves
similarly.]

The basic physical process reflected by the OTOC is the
spread of Heisenberg operators with time. Imagine starting
with a simple W , e.g., an operator acting nontrivially on just
one spin in a many-spin system. Time evolving yields W(t).
The operator has grown ifW(t) acts nontrivially on more spins
than W does. The operator V functions as a probe for testing

4Measurements of W and V are discussed in Ref. [37] and here.
Hermitian operators GW and GV generate W and V . If W and V are
not Hermitian, GW and GV are measured instead of W and V .

whether the action of W(t) has spread to the spin on which V

acts nontrivially.
SupposeW and V are unitary and commute. At early times,

W(t) and V approximately commute. Hence, F (t) ≈ 1, and
C(t) ≈ 0. Depending on the dynamics, at later times, W(t)
may significantly fail to commute with V . In a chaotic quantum
system, W(t) and V generically do not commute at late times,
for most choices of W and V .

The analogous statement for Hermitian W and V is that
F (t) approximately equals the TOC terms at early times. At
late times, depending on the dynamics, the commutator can
grow large. The time required for the TOC terms to approach
their equilibrium values is called the dissipation time, td. This
time parallels the time required for a system to reach local
thermal equilibrium. The time scale on which the commutator
grows to be order one is called the scrambling time, t∗. The
scrambling time parallels the time over which a drop of ink
spreads across a container of water.

Why consider the commutator’s square modulus? The
simpler object 〈[W(t),V ]〉 often vanishes at late times, due
to cancellations between states in the expectation value. Phys-
ically, the vanishing of 〈[W(t),V ]〉 signifies that perturbing the
system with V does not significantly change the expectation
value of W(t). This physics is expected for a chaotic system,
which effectively loses its memory of its initial conditions. In
contrast, C(t) is the expectation value of a positive operator
(the magnitude-squared commutator). The cancellations that
zero out 〈[W(t),V ]〉 cannot zero out 〈|[W(t),V ]|2〉.

Mathematically, the diagonal elements of the matrix that
represents [W(t),V ] relative to the energy eigenbasis can be
small. 〈[W(t),V ]〉, evaluated on a thermal state, would be
small. Yet, the matrix’s off-diagonal elements can boost the
operator’s Frobenius norm,

√
Tr(|[W(t),V ]|2), which reflects

the size of C(t).
We can gain intuition about the manifestation of chaos

in F (t) from a simple quantum system that has a chaotic
semiclassical limit. Let W = q and V = p for some position
q and momentum p:

C(t) = −〈[q(t),p]2〉 ∼ h̄2e2λL t . (31)

This λL is a classical Lyapunov exponent. The final expression
follows from the correspondence principle: commutators are
replaced with ih̄ times the corresponding Poisson bracket. The
Poisson bracket of q(t) with p equals the derivative of the final
position with respect to the initial position. This derivative
reflects the butterfly effect in classical chaos, i.e., sensitivity
to initial conditions. The growth of C(t), and the deviation of
F (t) from the TOC terms, provide a quantum generalization
of the butterfly effect.

Within this simple quantum system, the analog of the
dissipation time may be regarded as td ∼ λ−1

L . The analog of the
scrambling time is t∗ ∼ λ−1

L ln �
h̄

. The � denotes some measure
of the accessible phase-space volume. Suppose that the phase
space is large in units of h̄. The scrambling time is much longer
than the dissipation time: t∗ � td. Such a parametric separation
between the time scales characterizes the systems that interest
us most.
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In more general chaotic systems, the value of t∗ depends
on whether the interactions are geometrically local and on W
and V . Consider, as an example, a spin chain governed by a
local Hamiltonian. Suppose that W and V are local operators
that act nontrivially on spins separated by a distance 	. The
scrambling time is generically proportional to 	. For this class
of local models, 	/t∗ defines a velocity vB called the butterfly
velocity. Roughly, the butterfly velocity reflects how quickly
initially local Heisenberg operators grow in space.

Consider a system in which td is separated parametrically
from t∗. The rate of change of F (t) [rather, a regulated variation
on F (t)] was shown to obey a nontrivial bound. Parametrize
the OTOC as F (t) ∼ TOC − ε eλL t . The parameter ε � 1
encodes the separation of scales. The exponent λL obeys
λL � 2πkBT in thermal equilibrium at temperature T [6]. kB

denotes Boltzmann’s constant. Black holes in the AdS+CFT
duality saturate this bound, exhibiting maximal chaos [1,30].

More generally, λL and vB control the operators’ growth and
the spread of chaos. The OTOC has thus attracted attention
for a variety of reasons, including (but not limited to) the
possibilities of nontrivial bounds on quantum dynamics, a new
probe of quantum chaos, and a signature of black holes in
AdS+CFT.

D. Introducing the quasiprobability behind the OTOC

F (t) was shown, in Ref. [37], to equal a moment of a
summed quasiprobability. We review this result, established
in four steps: a quantum probability amplitude Aρ is re-
viewed in Sec. I D 1. Amplitudes are combined to form the
quasiprobability Ãρ in Sec. I D 2. Summing Ãρ(. . .) values,
with constraints, yields a complex distribution P (W,W ′) in
Sec. I D 3. Differentiating P (W,W ′) yields the OTOC. Ãρ can
be inferred experimentally from a weak-measurement scheme
and from interference. We review these schemes in Sec. I D 4.

A third quasiprobability is introduced in Sec. II A, the
coarse-grained quasiprobability ˜Aρ . ˜Aρ follows from sum-
ming values of Ãρ . ˜Aρ has a more concise description than
Ãρ . Also, measuring ˜Aρ requires fewer resources (e.g., trials)
than measuring Ãρ . Hence, Secs. II–IV will spotlight ˜Aρ . Ãρ

returns to prominence in the proofs of Sec. V and in opportu-
nities detailed in Sec. VI. Different distributions suit different
investigations. Hence the presentation of three distributions in
this thorough study: Ãρ , ˜Aρ , and P (W,W ′).

1. Quantum probability amplitude Aρ

The OTOC quasiprobability Ãρ is defined in terms of
probability amplitudes Aρ . The Aρ’s are defined in terms of
the following process, PA:

(1) Prepare ρ.
(2) Measure the ρ eigenbasis {|j 〉〈j |}.
(3) Evolve S forward in time under U .
(4) Measure W̃ .
(5) Evolve S backward under U †.
(6) Measure Ṽ .
(7) Evolve S forward under U .
(8) Measure W̃ .
Suppose that the measurements yield the outcomes j ,

(w1,αw1 ), (v1,λv1 ), and (w2,αw2 ). Figure 2(a) illustrates this

Experiment 
time

0

-t

j

Measure W̃. Measure W̃.

(w2, αw2)

Prepare
ρ.

Measure
{|j j|}.

Measure
Ṽ .

U UU†

(w3, αw3)

(v2, λv2)

Experiment 
time

0

-t

j (v1, λv1)

Measure W̃. Measure W̃.

(w1, αw1) (w2, αw2)

Prepare
ρ.

Measure
{|j j|}.

Measure
Ṽ .

U UU†

(a)

(b)

FIG. 2. Quantum processes described by the probability am-
plitudes Aρ in the out-of-time-ordered correlator (OTOC). These
figures, and parts of this caption, appear in Ref. [37]. The OTOC
quasiprobability Ãρ results from summing products A∗

ρ(. . .)Aρ(. . .).
Each Aρ(. . .) denotes a probability amplitude [Eq. (32)], so each
product resembles a probability. But the amplitudes’ arguments
differ (the amplitudes correspond to different quantum processes)
because the OTOC operators W(t) and V fail to commute, typically.
Panel (a) Illustrates the process described by the Aρ(. . .); Panel
(b), the process described by the A∗

ρ(. . .). Time, as measured by a
laboratory clock, increases from left to right. Each process begins
with the preparation of the state ρ = ∑

j pj |j〉〈j | and a measurement
of the state’s eigenbasis. Three evolutions (U , U †, and U ) then alter-
nate with three measurements of observables (W̃ , Ṽ , and W̃). Panels
(a) and (b) are used to define Ãρ , rather than showing protocols for
measuring Ãρ .

process. The process corresponds to the probability amplitude5

Aρ

(
j ; w1,αw1 ; v1,λv1 ; w2,αw2

)
:= 〈

w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣U †∣∣w1,αw1

〉
× 〈

w1,αw1

∣∣U |j 〉√pj . (32)

We do not advocate for performing PA in any experiment.
PA is used to define Aρ and to interpret Aρ physically.

5We order the arguments of Aρ differently than in Ref. [37]. Our
ordering here parallels our later ordering of the quasiprobability’s
argument. Weak-measurement experiments motivate the quasiproba-
bility arguments’ ordering. This motivation is detailed in Footnote 7.
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Instances of Aρ are combined into Ãρ . A weak-measurement
protocol can be used to measure Ãρ experimentally. An
interference protocol can be used to measure Aρ (and so Ãρ)
experimentally.

2. Fine-grained OTOC quasiprobability Ãρ

The quasiprobability’s definition is constructed as follows.
Consider a realization of PA that yields the outcomes j ,
(w3,αw3 ), (v2,λv2 ), and (w2,αw2 ). Figure 2(b) illustrates this
realization. The initial and final measurements yield the same
outcomes as in the (32) realization. We multiply the complex
conjugate of the second realization’s amplitude by the first
realization’s probability amplitude. Then, we sum over j and
(w1,αw1 ):6,7

Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
:=

∑
j,(w1,αw1 )

A∗
ρ

(
j ; w3,αw3 ; v2,λv2 ; w2,αw2

)
×Aρ

(
j ; w1,αw1 ; v1,λv1 ; w2,αw2

)
. (33)

Equation (33) resembles a probability but differs due to the
noncommutation ofW(t) and V . We illustrate this relationship
in two ways.

Consider a 1D quantum system, e.g., a particle on a line.
We represent the system’s state with a wave function ψ(x). The
probability density at point x equals ψ∗(x) ψ(x). The A∗

ρ Aρ

in Eq. (33) echoes ψ∗ψ . But, the argument of the ψ∗ equals
the argument of the ψ . The argument of the A∗

ρ differs from
the argument of the Aρ because W(t) and V fail to commute.

Substituting into Eq. (33) from Eq. (32) yields

Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
= 〈

w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣U †∣∣w2,αw2

〉
× 〈

w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣ρU †∣∣w3,αw3

〉
. (34)

A simple example illustrates how Ãρ nearly equals a prob-
ability. Suppose that an eigenbasis of ρ coincides with
{|v	,λv	

〉〈v	,λv	
|} or with {U †|w	,αw	

〉〈w	,αw	
|U}. Suppose,

for example, that

ρ = ρV :=
∑
v	,λv	

pv	,λv	

∣∣v	,λv	

〉 〈
v	,λv	

∣∣. (35)

6Familiarity with tensors might incline one to sum over the (w2,αw2 )
shared by the trajectories. But, we are not invoking tensors. More
importantly, summing over (w2,αw2 ) introduces a δv1v2δλv1 λv2

that
eliminates one (v	,λv	

) degree of freedom. The resulting quasiprob-
ability would not “lie behind” the OTOC. One could, rather than
summing over (w1,αw1 ), sum over (w3,αw3 ). Either way, one sums
over one trajectory’s first W̃ outcome. We sum over (w1,αw1 ) to
maintain consistency with [37].

7In Ref. [37], the left-hand side’s arguments are ordered differently
and are condensed into the shorthand (w,v,αw,λv). Experiments
motivate our reordering: consider inferring Ãρ(a,b,c,d) from exper-
imental measurements. In each trial, one (loosely speaking) weakly
measures a, then b, then c, and then measures d strongly. As the
measurements are ordered, so are the arguments.

One such ρ is the infinite-temperature Gibbs state 1/d. Another
example is easier to prepare: Suppose that S consists of N spins
and that V = σx

N . One ρV equals a product of N σx eigenstates.
Let (v2,λv2 ) = (v1,λv1 ). [An analogous argument follows from
(w3,αw3 ) = (w2,αw2 ).] Equation (34) reduces to∣∣〈w2,αw2

∣∣U ∣∣v1,λv1

〉∣∣2 ∣∣〈w3,αw3

∣∣U ∣∣v1,λv1

〉∣∣2 pv1,λv1
. (36)

Each square modulus equals a conditional probability. pv1,λv1

equals the probability that, if ρ is measured with respect to
{|v	,λv	

〉〈v	,λv	
|}, outcome (v1,λv1 ) obtains.

In this simple case, certain quasiprobability values equal
probability values: the quasiprobability values that satisfy
(v2,λv2 ) = (v1,λv1 ) or (w3,αw3 ) = (w2,αw2 ). When both
conditions are violated, typically, the quasiprobability value
does not equal a probability value. Hence, not all the OTOC
quasiprobability’s values reduce to probability values. Just as
a quasiprobability lies behind the OTOC, quasiprobabilities lie
behind time-ordered correlators (TOCs). Every value of a TOC
quasiprobability reduces to a probability value in the same
simple case (when ρ equals, e.g., a V eigenstate) (Sec. V D).

3. Complex distribution P(W,W ′)

Ãρ is summed, in Ref. [37], to form a complex distribution
P (W,W ′). Let W := w∗

3v
∗
2 and W ′ := w2v1 denote random

variables calculable from measurement outcomes. If W and
V are Paulis, (W,W ′) can equal (1,1), (1,−1), (−1,1), or
(−1,−1).

W and W ′ serve, in the Jarzynski-type equality (1), analo-
gously to the thermodynamic work Wth in Jarzynski’s equality
[38]. Wth is a random variable, inferable from experiments,
that fluctuates from trial to trial. So are W and W ′. One infers
a value of Wth by performing measurements and processing
the outcomes. The two-point measurement scheme (TPMS)
illustrates such protocols most famously. The TPMS has been
used to derive quantum fluctuation relations [105]. One pre-
pares the system in a thermal state, measures the Hamiltonian
Hi projectively; disconnects the system from the bath; tunes
the Hamiltonian to Hf ; and measures Hf projectively. Let Ei

and Ef denote the measurement outcomes. The work invested
in the Hamiltonian tuning is defined as Wth := Ef − Ei .
Similarly, to infer W and W ′, one can measure W and V as in
Sec. I D 4, then multiply the outcomes.

Consider fixing the value of (W,W ′). For example, let
(W,W ′) = (1,−1). Consider the octuples (v1,λv1 ; w2,αw2 ;
v2,λv2 ; w3,αw3 ) that satisfy the constraints W = w∗

3v
∗
2 and

W ′ = w2v1. Each octuple corresponds to a quasiprobability
value Ãρ(. . .). Summing these quasiprobability values yields

P (W,W ′) :=
∑

(v1,λv1 ),(w2,αw2 ),(v2,λv2 ),(w3,αw3 )

× Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
× δW (w∗

3v∗
2 )δW ′(w2v1). (37)

The Kronecker delta is represented by δab. P (W,W ′) functions
analogously to the probability distribution, in the fluctuation-
relation paper [38], over values of thermodynamic work.

The OTOC equals a moment of P (W,W ′) [Eq. (1)],
which equals a constrained sum over Ãρ [37]. Hence our
labeling of Ãρ as a “quasiprobability behind the OTOC.”
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Equation (37) expresses the useful, difficult-to-measure F (t) in
terms of a characteristic function of a (summed) quasiprobabil-
ity, as Jarzynski [38] expresses a useful, difficult-to-measure
free-energy difference �F in terms of a characteristic func-
tion of a probability. Quasiprobabilities reflect nonclassicality
(contextuality) as probabilities do not; so, too, does F (t) reflect
nonclassicality (noncommutation) as �F does not.

The definition of P involves arbitrariness: the measurable
random variables, and P , may be defined differently. Alterna-
tive definitions, introduced in Sec. V E, extend more robustly
to OTOCs that encode more time reversals. All possible defi-
nitions share two properties: (i) The arguments W , etc., denote
random variables inferable from measurement outcomes. (ii) P

results from summing Ãρ(. . .) values subject to constraints δab.
P (W,W ′) resembles a work distribution constructed

by Solinas and Gasparinetti (SG) [106,107]. They study
fluctuation-relation contexts, rather than the OTOC. SG pro-
pose a definition for the work performed on a quantum system
[108,109]. The system is coupled weakly to detectors at a
protocol’s start and end. The couplings are represented by con-
straints like δW (w∗

3v∗
2 ) and δW ′(w2v1). Suppose that the detectors

measure the system’s Hamiltonian. Subtracting the measure-
ments’ outcomes yields the work performed during the proto-
col. The distribution over possible work values is a quasiproba-
bility. Their quasiprobability is a Husimi Q function, whereas
the OTOC quasiprobability is a KD distribution [109]. Re-
lated frameworks appear in Refs. [110–112]. The relationship
between those thermodynamics frameworks and our thermo-
dynamically motivated OTOC framework merits exploration.

4. Weak-measurement and interference schemes for inferring Ãρ

Ãρ can be inferred from weak measurements and from
interference, as shown in Ref. [37]. Section II D shows
how to infer a coarse graining of Ãρ from other OTOC-
measurement schemes (e.g., [41]). We focus mostly on the
weak-measurement scheme here. The scheme is simplified in
Sec. II. First, we briefly review the interference scheme.

The interference scheme in Ref. [37] differs from other in-
terference schemes for measuring F (t) [41–43]: from the [37]
interference scheme, one can infer not only F (t), but also Ãρ .
Time need not be inverted (H need not be negated) in any trial.
The scheme is detailed in Appendix B of [37]. The system is
coupled to an ancilla prepared in a superposition 1√

2
(|0〉 + |1〉).

A unitary, conditioned on the ancilla, rotates the system’s state.
The ancilla and system are measured projectively. From many
trials’ measurement data, one infers 〈a|U |b〉, wherein U = U

or U † and a,b = (w	,αw	
),(vm,λvm

). These inner products are
multiplied together to form Ãρ [Eq. (34)]. If ρ shares neither
the Ṽ nor the W̃(t) eigenbasis, quantum-state tomography is
needed to infer 〈v1,λv1 |ρU †|w3,αw3〉.

The weak-measurement scheme is introduced in
Sec. II B 3 of [37]. A simple case, in which ρ = 1/d, is
detailed in Appendix A of [37]. Recent weak measurements
[10–13,31–35], some used to infer KD distributions, inspired
our weak Ãρ-measurement proposal. We review weak
measurements, a Kraus-operator model for measurements,
and the Ãρ-measurement scheme.

Review of weak measurements. Measurements can alter
quantum systems’ states. A weak measurement barely disturbs

the measured system’s state. In exchange, the measurement
provides little information about the system. Yet, one can infer
much by performing many trials and processing the outcome
statistics.

Extreme disturbances result from strong measurements
[113]. The measured system’s state collapses onto a subspace.
For example, let ρ denote the initial state. Let A = ∑

a a|a〉〈a|
denote the measured observable’s eigendecomposition. A
strong measurement has a probability 〈a|ρ|a〉 of projecting
ρ onto |a〉.

One can implement a measurement with an ancilla. Let
X = ∑

x x|x〉〈x| denote an ancilla observable. One correlates
A with X via an interaction unitary. Von Neumann modeled
such unitaries with Vint := e−ig̃A⊗X [14,114]. The parameter g̃

signifies the interaction strength.8 An ancilla observable, say,
Y = ∑

y y|y〉〈y|, is measured strongly.
The greater the g̃, the stronger the measurement. A is

measured strongly if a one-to-one mapping interrelates the
a’s and the possible measurement outcomes y. We can say
that an A measurement has yielded some outcome ay . If g̃

is small, y provides incomplete information about A. The
value most reasonably attributable to A remains ay . But, a
subsequent measurement of A would not necessarily yield
ay . In exchange for forfeiting information about A, we barely
disturb the system’s initial state. We can learn more about A
by measuringAweakly in each of many trials, then processing
measurement statistics.

Kraus-operator model for measurement. Kraus operators
[113] model the system-of-interest evolution induced by a
weak measurement. Let us choose the following form for
A. Let V = ∑

v	,λv	
v	|v	,λv	

〉〈v	,λv	
| = ∑

v	
v	 �V

v	
denote an

observable of the system. �V
v	

projects onto the v	 eigenspace.
LetA = |v	,λv	

〉〈v	,λv	
|. Let ρ denote the system’s initial state,

and let |D〉 denote the detector’s initial state.
Suppose that the Y measurement yields y. The system’s

state evolves under the Kraus operator

My = 〈y|Vint|D〉 (38)

= 〈y| exp
( − ig̃

∣∣v	,λv	

〉〈
v	,λv	

∣∣ ⊗ X
)|D〉 (39)

= 〈y|D〉 1 + 〈y|(e−ig̃X − 1)|D〉 ∣∣v	,λv	

〉〈
v	,λv	

∣∣ (40)

as ρ �→ MyρM
†
y

Tr(MyρM
†
y )

. The third equation follows from Tay-

lor expanding the exponential, then replacing the pro-
jector’s square with the projector.9 We reparametrize the
coefficients as 〈y|D〉 ≡ p(y) eiφ , wherein p(y) := |〈y|D〉| and

8A and X are dimensionless: to form them, we multiply dimension-
ful observables by natural scales of the subsystems. These scales are
incorporated into g̃.

9Suppose that each detector observable (each of X and Y ) has at least
as many eigenvalues as V . For example, let Y represent a pointer’s
position and X represent the momentum. Each X eigenstate can be
coupled to one V eigenstate. A will equal V , and Vint will have the
form e−ig̃V ⊗X . Such a coupling makes efficient use of the detector:
every possible final pointer position y correlates with some (v	,λv	

).
Different |v	,λv	

〉〈v	,λv	
|’s need not couple to different detectors.

Since a weak measurement of V provides information about one
(v	,λv	

) as well as a weak measurement of |v	,λv	
〉〈v	,λv	

| does, we
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〈y|(e−ig̃X − 1)|D〉 ≡ g(y) eiφ . An unimportant global phase is
denoted by eiφ . We remove this global phase from the Kraus
operator, redefining My as

My =
√

p(y) 1 + g(y)
∣∣v	,λv	

〉 〈
v	,λv	

∣∣. (42)

The coefficients have the following significances. Suppose
that the ancilla did not couple to the system. The Y measure-
ment would have a baseline probability p(y) of outputting y.
The dimensionless parameter g(y) ∈ C is derived from g̃. We
can roughly interpret My statistically: In any given trial, the
coupling has a probability p(y) of failing to disturb the system
(of evolving ρ under 1) and a probability |g(y)|2 of projecting
ρ onto |v	,λv	

〉〈v	,λv	
|.

Weak-measurement scheme for inferring the OTOC
quasiprobability Ãρ . Weak measurements have been used to
measure KD quasiprobabilities [10–13,31,32,34,35]. These
experiments’ techniques can be applied to infer Ãρ and, from
Ãρ , the OTOC. Our scheme involves three sequential weak
measurements per trial (if ρ is arbitrary) or two [if ρ shares
the Ṽ or the W̃(t) eigenbasis, e.g., if ρ = 1/d]. The weak
measurements alternate with time evolutions and precede a
strong measurement.

We review the general and simple-case protocols. A pro-
jection trick, introduced in Sec. II A, reduces exponentially
the number of trials required to infer about Ãρ and F (t). The
weak-measurement and interference protocols are analyzed in
Sec. II B. A circuit for implementing the weak-measurement
scheme appears in Sec. II C.

Suppose that ρ does not share the Ṽ or the W̃(t) eigenbasis.
One implements the following protocol, P:

(1) Prepare ρ.
(2) Measure Ṽ weakly. (Couple the system’s Ṽ weakly to

some observable X of a clean ancilla. Measure X strongly.)
(3) Evolve the system forward in time under U .
(4) Measure W̃ weakly. (Couple the system’s W̃ weakly

to some observable Y of a clean ancilla. Measure Y strongly.)
(5) Evolve the system backward under U †.
(6) Measure Ṽ weakly. (Couple the system’s Ṽ weakly to

some observable Z of a clean ancilla. Measure Z strongly.)

will sometimes call a weak measurement of |v	,λv	
〉〈v	,λv	

| “a weak
measurement of V ,” for conciseness.

The efficient detector use trades off against mathematical simplic-
ity, ifA is not a projector: Eq. (38) fails to simplify to Eq. (40). Rather,
Vint should be approximated to some order in g̃. The approximation is
(i) first order if a KD quasiprobability is being inferred and (ii) third
order if the OTOC quasiprobability is being inferred.

If A is a projector, Eq. (38) simplifies to Eq. (40) even if A is
degenerate, e.g., A = �V

v	
. Such an A assignment will prove natural

in Sec. II: weak measurements of eigenstates |v	,λv	
〉〈v	,λv	

| are
replaced with less-resource-consuming weak measurements of �V

v	
’s.

Experimentalists might prefer measuring Pauli operators σα (for
α = x,y,z) to measuring projectors � explicitly. Measuring Paulis
suffices, as the eigenvalues of σα map, bijectively and injectively,
onto the eigenvalues of � (Sec. II). Paulis square to the identity,
rather than to themselves: (σα)2 = 1. Hence, Eq. (40) becomes

〈y| cos(g̃X)|D〉 1 − i〈y| sin(g̃X)|D〉 σα. (41)

(7) Evolve the system forward under U .
(8) Measure W̃ strongly.
X, Y , and Z do not necessarily denote Pauli operators.

Each trial yields three ancilla eigenvalues (x, y, and z) and
one W̃ eigenvalue (w3,αw3 ). One implements P many times.
From the measurement statistics, one infers the probability
Pweak(x; y; z; w3,αw3 ) that any given trial will yield the out-
come quadruple (x; y; z; w3,αw3 ).

From this probability, one infers the imaginary part of
the quasiprobability Ãρ(v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3 ). The
probability has the form

Pweak
(
x; y; z; w3,αw3

)
= 〈

w3,αw3

∣∣UMzU
†MyUMxρM†

xU
†M†

yUM†
zU

†∣∣w3,αw3

〉
.

(43)

We integrate over x, y, and z, to take advantage of all
measurement statistics. We substitute in for the Kraus operators
from Eq. (42), then multiply out. The result appears in Eq. (A7)
of [37]. Two terms combine into ∝Im(Ãρ(. . .)). The other
terms form independently measurable “background” terms. To
infer Re(Ãρ(. . .)), one performs P many more times, using
different couplings (equivalently, measuring different detector
observables). Details appear in Appendix A of [37].

To infer the OTOC, one multiplies each quasiprobability
value Ãρ(v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3 ) by the eigenvalue
product v1w2v

∗
2w

∗
3 . Then, one sums over the eigenvalues and

the degeneracy parameters:

F (t) =
∑

(v1,λv1 ),(w2,αw2 ),(v2,λv2 ),(w3,αw3 )

v1w2v
∗
2w

∗
3

× Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
. (44)

Equation (44) follows from Eq. (1). Hence, inferring the OTOC
from the weak-measurement scheme, inspired by Jarzynski’s
equality, requires a few steps more than inferring a free-
energy difference �F from Jarzynski’s equality [38]. Yet,
such quasiprobability reconstructions are performed routinely
in quantum optics.

W and V are local. Their degeneracies therefore scale with
the system size. If S consists of N spin- 1

2 DOFs, |αw	
|,|λv	

| ∼
2N . Exponentially many Ãρ(. . .) values must be inferred.
Exponentially many trials must be performed. We sidestep
this exponentiality in Sec. II A: one measures eigenprojectors
of the degenerate W and V , rather than of the nondegenerate
W̃ and Ṽ . The one-dimensional |v	,λv	

〉〈v	,λv	
| of Eq. (40) is

replaced with �V
v	

. From the weak measurements, one infers
the coarse-grained quasiprobability

∑
degeneracies Ãρ(. . .) =:

˜Aρ(. . .). Summing ˜Aρ(. . .) values yields the OTOC:

F (t) =
∑

v1,w2,v2,w3

v1w2v
∗
2w

∗
3

˜Aρ(v1,w2,v2,w3) . (45)

Equation (45) follows from performing the sums over the
degeneracy parameters α and λ in Eq. (44).

Suppose that ρ shares the Ṽ or the W̃(t) eigenbasis. The
number of weak measurements reduces to two. For example,
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suppose that ρ is the infinite-temperature Gibbs state 1/d. The
protocol P becomes the following:

(1) Prepare a W̃ eigenstate |w3,αw3〉.
(2) Evolve the system backward under U †.
(3) Measure Ṽ weakly.
(4) Evolve the system forward under U .
(5) Measure W̃ weakly.
(6) Evolve the system backward under U †.
(7) Measure Ṽ strongly.
In many recent experiments, only one weak measurement

is performed per trial [10,12,31]. A probability Pweak must
be approximated to first order in the coupling constant g(x).
Measuring Ãρ requires two or three weak measurements
per trial. We must approximate Pweak to second or third
order. The more weak measurements performed sequentially,
the more demanding the experiment. Yet, sequential weak
measurements have been performed recently [32–34]. The
experimentalists aimed to reconstruct density matrices and to
measure non-Hermitian operators. The OTOC measurement
provides new applications for their techniques.

II. EXPERIMENTALLY MEASURING Ãρ

AND THE COARSE GRAINED ˜Aρ

Multiple reasons motivate measurements of the OTOC
quasiprobability Ãρ . Ãρ is more fundamental than the OTOC
F (t), as F (t) results from combining values of Ãρ . Ãρ exhibits
behaviors not immediately visible in F (t), as shown in Secs. III
and IV. Ãρ therefore holds interest in its own right. Addition-
ally, Ãρ suggests new schemes for measuring the OTOC. One
measures the possible values of Ãρ(. . .), then combines the
values to form F (t). Two measurement schemes are detailed in
Ref. [37] and reviewed in Sec. I D 4. One scheme relies on weak
measurements; one, on interference. We simplify, evaluate, and
augment these schemes.

First, we introduce a “projection trick”: Summing
over degeneracies turns one-dimensional projectors (e.g.,
|w	,αw	

〉〈w	,αw	
|) into projectors onto degenerate eigenspaces

(e.g., �W
w	

). The coarse-grained OTOC quasiprobability ˜Aρ

results. This trick decreases exponentially the number of
trials required to infer the OTOC from weak measurements.10

Section II B concerns pros and cons of the weak-measurement
and interference schemes for measuring Ãρ and F (t). We also
compare those schemes with alternative schemes for measur-
ing F (t). Section II C illustrates a circuit for implementing the
weak-measurement scheme. Section II D shows how to infer

˜Aρ not only from the measurement schemes in Sec. I D 4, but
also with alternative OTOC-measurement proposals (e.g., [41])
(if the eigenvalues of W and V are ±1).

A. Coarse-grained OTOC quasiprobability
˜Aρ and a projection trick

W and V are local. They manifest, in our spin-chain ex-
ample, as one-qubit Paulis that nontrivially transform opposite

10The summation preserves interesting properties of the quasiprob-
ability (nonclassical negativity and nonreality) and intrinsic time
scales. We confirm this preservation via numerical simulation in
Sec. III.

ends of the chain. The operators’ degeneracies grow expo-
nentially with the system size N : |αw	

|, |λvm
| ∼ 2N . Hence,

the number of Ãρ(. . .) values grows exponentially. One must
measure exponentially many numbers to calculate F (t) pre-
cisely via Ãρ . We circumvent this inconvenience by summing
over the degeneracies in Ãρ(. . .), forming the coarse-grained
quasiprobability ˜Aρ(. . .). ˜Aρ(. . .) can be measured in numer-
ical simulations, experimentally via weak measurements, and
(if the eigenvalues of W and V are ±1) experimentally with
other F (t)-measurement setups (e.g., [41]).

The coarse-grained OTOC quasiprobability results from
marginalizing Ãρ(. . .) over its degeneracies:

˜Aρ(v1,w2,v2,w3)

:=
∑

λv1 ,αw2 ,λv2 ,αw3

Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
. (46)

Equation (46) reduces to a more practical form. Consider
substituting into Eq. (46) for Ãρ(. . .) from Eq. (34). The
right-hand side of Eq. (34) equals a trace. Due to the trace’s
cyclicality, the three rightmost factors can be shifted leftward:

˜Aρ(v1,w2,v2,w3) =
∑

λv1 ,αw2 ,

λv2 ,αw3

Tr
(
ρU †∣∣w3,αw3

〉〈
w3,αw3

∣∣U
×∣∣v2,λv2

〉〈
v2,λv2

∣∣U †∣∣w2,αw2

〉〈
w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣).
(47)

The sums are distributed throughout the trace:

˜Aρ(v1,w2,v2,w3)

= Tr

⎛
⎝ρ

⎡
⎣U †

∑
αw3

∣∣w3,αw3

〉〈
w3,αw3

∣∣U
⎤
⎦

×
⎡
⎣∑

λv2

∣∣v2,λv2

〉〈
v2,λv2

∣∣
⎤
⎦
⎡
⎣U †

∑
αw2

∣∣w2,αw2

〉〈
w2,αw2

∣∣U
⎤
⎦

×
⎡
⎣∑

λv1

∣∣v1,λv1

〉〈
v1,λv1

∣∣
⎤
⎦
⎞
⎠. (48)

Define

�W
w	

:=
∑
αw	

∣∣w	,αw	

〉〈
w	,αw	

∣∣ (49)

as the projector onto the w	 eigenspace of W ,

�W(t)
w	

:= U †�W
w	

U (50)

as the projector onto the w	 eigenspace of W(t), and

�V
v	

:=
∑
λv	

∣∣v	,λv	

〉 〈
v	,λv	

∣∣ (51)

as the projector onto the v	 eigenspace of V . We substitute into
Eq. (48), then invoke the trace’s cyclicality:

˜Aρ(v1,w2,v2,w3) = Tr
(
�W(t)

w3
�V

v2
�W(t)

w2
�V

v1
ρ
)

. (52)

Asymmetry distinguishes Eq. (52) from Born’s rule and
from expectation values. Imagine preparing ρ, measuring V
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TABLE I. Comparison of our measurement schemes with alternatives. This paper focuses on the weak-measurement and interference
schemes for measuring the OTOC quasiprobability Ãρ or the coarse-grained quasiprobability ˜Aρ . From Ãρ or ˜Aρ , one can infer the OTOC F (t).
These schemes appear in Ref. [37], are reviewed in Sec. I D 4, and are assessed in Sec. II B. We compare our schemes with the OTOC-measurement
schemes in Refs. [41,42,44]. More OTOC-measurement schemes appear in Refs. [39,43,45–48]. Each row corresponds to a desirable quantity
or to a resource potentially challenging to realize experimentally. The regulated correlator Freg(t) [Eq. (108)] is expected to behave similarly to
F (t) [6,42]. D(H) denotes the set of density operators defined on the Hilbert space H. ρ denotes the initially prepared state. Target states ρtarget

are never prepared perfectly; ρ may differ from ρtarget . Experimentalists can reconstruct ρ by trivially processing data taken to infer Ãρ [37]
(Sec. V B). F (K̄ )(t) denotes the ¯K -fold OTOC, which encodes K = 2 ¯K − 1 time reversals. The conventional OTOC corresponds to K = 3.
The quasiprobability behind F (K̄ )(t) is Ã(K )

ρ (Sec. V E). N denotes the system size, e.g., the number of qubits. The Swingle et al. and Zhu
et al. schemes have constant signal-to-noise ratios (SNRs) in the absence of environmental decoherence. The Yao et al. scheme’s SNR varies
inverse exponentially with the system’s entanglement entropy, SvN. The system occupies a thermal state e−H/T /Z, so SvN ∼ log(2N ) = N .

Weak Yunger Halpern Swingle Yao Zhu
measurement interferometry et al. et al. et al.

Key tools Weak Interference Interference, Ramsey interfer., Quantum
measurement Loschmidt echo Rényi-entropy meas. clock

What’s inferable (1) F (t), Ãρ , F (K̄ )(t), ÃK
ρ , F (t) Regulated F (t)

from the and ρ or and ρ ∀ K correlator
measurement? (2) F (t) and ˜Aρ Freg(t)

Generality Arbitrary Arbitrary Arbitrary Thermal Arbitrary
of ρ ρ ∈ D(H) ρ ∈ D(H) ρ ∈ D(H) e−H/T /Z ρ ∈ D(H)

Ancilla Yes Yes Yes for Re(F (t)), Yes Yes
needed? no for |F (t)|2

Ancilla coupling No Yes Yes No Yes
global?

How long must 1 weak Whole Whole Whole Whole
ancilla stay measurement protocol protocol protocol protocol
coherent?

# time 2 0 1 0 2 (implemented
reversals via ancilla)

# copies of ρ 1 1 1 2 1
needed/trial

Signal-to- To be determined To be determined Constant ∼e−N Constant
noise ratio in N in N

Restrictions Hermitian or Unitary Unitary (extension Hermitian Unitary
on W & V unitary to Hermitian possible) and unitary

strongly, evolving S forward under U , measuring W strongly,
evolving S backward under U †, measuring V strongly, evolv-
ing S forward under U , and measuring W . The probability of
obtaining the outcomes v1, w2, v2, and w3, in that order, is

Tr
(
�W(t)

w3
�V

v2
�W(t)

w2
�V

v1
ρ�V

v1
�W(t)

w2
�V

v2
�W(t)

w3

)
. (53)

The operator �W(t)
w3

�V
v2

�W(t)
w2

�V
v1

conjugates ρ symmetrically.
This operator multiplies ρ asymmetrically in Eq. (52). Hence,

˜Aρ does not obviously equal a probability.
Nor does ˜Aρ equal an expectation value. Expectation

values have the form Tr(ρA), wherein A denotes a Hermitian
operator. The operator leftward of the ρ in Eq. (52) is not
Hermitian. Hence, ˜Aρ lacks two symmetries of familiar quan-
tum objects: the symmetric conjugation in Born’s rule and the
invariance, under Hermitian conjugation, of the observable A
in an expectation value.

The right-hand side of Eq. (52) can be measured numer-
ically and experimentally. We present numerical measure-
ments in Sec. III. The weak-measurement scheme follows
from Appendix A of [37], reviewed in Sec. I D 4: Sec. I D 4

features projectors onto one-dimensional eigenspaces, e.g.,
|v1,λv1〉〈v1,λv1 |. Those projectors are replaced with �’s onto
higher-dimensional eigenspaces. Section II D details how ˜Aρ

can be inferred from alternative OTOC-measurement schemes.

B. Analysis of the quasiprobability-measurement schemes
and comparison with other OTOC-measurement schemes

Section I D 4 reviews two schemes for inferring Ãρ : a
weak-measurement scheme and an interference scheme. From
Ãρ measurements, one can infer the OTOC F (t). We evaluate
our schemes’ pros and cons. Alternative schemes for measur-
ing F (t) have been proposed [39,41–46], and two schemes
have been realized [47,48]. We compare our schemes with
alternatives, as summarized in Table I. For specificity, we focus
on [41,42,44].

The weak-measurement scheme augments the set of
techniques and platforms with which F (t) can be mea-
sured. Alternative schemes rely on interferometry [41–43],
controlled unitaries [41,44], ultracold-atom tools [43,45,46],
and strong two-point measurements [39]. Weak measurements,
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we have shown, belong in the OTOC-measurement toolkit.
Such weak measurements are expected to be realizable, in
the immediate future, with superconducting qubits [35,50–55],
trapped ions [56–62], cavity QED [64,65], ultracold atoms
[63], and perhaps NMR [66,67]. Circuits for weakly measuring
qubit systems have been designed [36,50]. Initial proof-of-
principle experiments might not require direct access to the
qubits: the five superconducting qubits available from IBM,
via the cloud, might suffice [116]. Random two-qubit unitaries
could simulate chaotic Hamiltonian evolution.

In many weak-measurement experiments, just one weak
measurement is performed per trial [10–13]. Yet, two weak
measurements have recently been performed sequentially [32–
34]. Experimentalists aimed to “directly measure general
quantum states” [11] and to infer about non-Hermitian observ-
ablelike operators. The OTOC motivates a new application of
recently realized sequential weak measurements.

Our schemes furnish not only the OTOC F (t), but also more
information:

(1) From the weak-measurement scheme in Ref. [37], we
can infer the following:

(A) The OTOC quasiprobability Ãρ . The quasiproba-
bility is more fundamental than F (t), as combining Ãρ(. . .)
values yields F (t) [Eq. (44)].

(B) The OTOC F (t).
(C) The form ρ of the state prepared. Suppose that

we wish to evaluate F (t) on a target state ρtarget. ρtarget

might be difficult to prepare, e.g., might be thermal. The
prepared state ρ approximates ρtarget. Consider performing
the weak-measurement protocol P with ρ. One infers
Ãρ . Summing Ãρ(. . .) values yields the form of ρ. We
can assess the preparation’s accuracy without performing
tomography independently. Whether this assessment meets
experimentalists’ requirements for precision remains to be
seen. Details appear in Sec. V C.
(2) The weak-measurement protocol P is simplified later

in this section. Upon implementing the simplified protocol, we
can infer the following information:

(A) The coarse-grained OTOC quasiprobability ˜Aρ .
Although less fundamental than the fine-grained Ãρ , ˜Aρ

implies the OTOC’s form [Eq. (45)].
(B) The OTOC F (t).

(3) Upon implementing the interferometry scheme in
Ref. [37], we can infer the following information:

(A) The OTOC quasiprobability Ãρ .
(B) The OTOC F (t).
(C) The form of the state ρ prepared.
(D) All the ¯K -fold OTOCs F ( ¯K )(t), which generalize

the OTOC F (t). F (t) encodes three time reversals. F ( ¯K )(t)
encodes K = 2 ¯K − 1 = 3,5, . . . time reversals. Details
appear in Sec. V E.

(E) The quasiprobability Ã(K )
ρ behind F ( ¯K )(t), for all

K (Sec. V E).
We have delineated the information inferable from the

weak-measurement and interference schemes for measuring
Ãρ and F (t). Let us turn to other pros and cons.

The weak-measurement scheme’s ancillas need not couple
to the whole system. One measures a system weakly by
coupling an ancilla to the system, then measuring the ancilla

(a)

(b)

FIG. 3. Quantum circuit for inferring the coarse-grained OTOC
quasiprobability ˜Aρ from weak measurements. We consider a system
of N qubits prepared in a state ρ. The local operators W = σW ⊗
1⊗(N−1) and V = 1⊗(N−1) ⊗ σV manifest as one-qubit Paulis. Weak
measurements can be used to infer the coarse-grained quasiprobability

˜Aρ . Combining values of ˜Aρ yields the OTOC F (t). Panel (a) depicts
a subcircuit used to implement a weak measurement of n = W or
V . An ancilla is prepared in a fiducial state |0〉. A unitary R†

n rotates
the qubit’s σn eigenbasis into its σ z eigenbasis. Ry(±φ) rotates the
ancilla’s state counterclockwise about the y axis through a small angle
±φ, controlled by the system’s σ z. The angle’s smallness guarantees
the measurement’s weakness. Rn rotates the system’s σ z eigenbasis
back into the σn eigenbasis. The ancilla’s σ z is measured strongly.
The outcome, + or −, dictates which partial-projection operator Dn

±
updates the state. (b) Shows the circuit used to measure ˜Aρ . Three
weak measurements, interspersed with three time evolutions (U , U †,
and U ), precede a strong measurement. Suppose that the initial state
ρ commutes with W or V , e.g., ρ = 1/d . Panel (b) requires only two
weak measurements.

strongly. Our weak-measurement protocol requires one ancilla
per weak measurement. Let us focus, for concreteness, on
an ˜Aρ measurement for a general ρ. The protocol involves
three weak measurements and so three ancillas. Suppose that
W and V manifest as one-qubit Paulis localized at opposite
ends of a spin chain. Each ancilla need interact with only
one site (Fig. 3). In contrast, the ancilla in Ref. [44] couples
to the entire system. So does the ancilla in our interference
scheme for measuring Ãρ . Global couplings can be engineered
in some platforms, though other platforms pose challenges.
Like our weak-measurement scheme, [41,42] require only
local ancilla couplings.

In the weak-measurement protocol, each ancilla’s state must
remain coherent during only one weak measurement, i.e.,
during the action of one (composite) gate in a circuit. The
first ancilla may be erased, then reused in the third weak
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measurement. In contrast, each ancilla in Refs. [41,42,44]
remains in use throughout the protocol. The Swingle et al.
scheme for measuring Re(F (t)), too, requires an ancilla that
remains coherent throughout the protocol [41]. The longer an
ancilla’s “active-duty” time, the more likely the ancilla’s state
is to decohere. Like the weak-measurement sheme, the Swingle
et al. scheme for measuring |F (t)|2 requires no ancilla [41].

Also in the interference scheme for measuring Ãρ [37], an
ancilla remains active throughout the protocol. That protocol,
however, is short: time need not be reversed in any trial.
Each trial features exactly one U or U †, not both. Time can
be difficult to reverse in some platforms, for two reasons.
Suppose that a Hamiltonian H generates a forward evolution.
A perturbation ε might lead −(H + ε) to generate the reverse
evolution. Perturbations can mar long-time measurements of
F (t) [44]. Second, systems interact with environments. Deco-
herence might not be completely reversible [41]. Hence, the
lack of a need for time reversal, as in our interference scheme
and in Refs. [42,44], has been regarded as an advantage.

Unlike our interference scheme, the weak-measurement
scheme requires that time be reversed. Perturbations ε threaten
the weak-measurement scheme as they threaten the Swingle
et al. scheme [41]. ε’s might threaten the weak-measurement
scheme more, because time is inverted twice in our scheme.
Time is inverted only once in Ref. [41]. However, our error
might be expected to have roughly the size of the Swingle
et al. scheme’s error. Furthermore, tools for mitigating the
Swingle et al. scheme’s inversion error were proposed after this
paper’s initial release [115]. Resilience of the Swingle et al.
scheme to decoherence has been analyzed [41]. These tools
may be applied to the weak-measurement scheme [115]. Like
resilience, our schemes’ signal-to-noise ratios require further
study.

As noted earlier, as the system size N grows, the number
of trials required to infer Ãρ grows exponentially. So does
the number of ancillas required to infer Ãρ : measuring a
degeneracy parameter αw	

or λvm
requires a measurement of

each spin. Yet, the number of trials, and the number of ancillas,
required to measure the coarse grained ˜Aρ remains constant
as N grows. One can infer ˜Aρ from weak measurements
and, alternatively, from other F (t)-measurement schemes
(Sec. II D). ˜Aρ is less fundamental than Ãρ , as ˜Aρ results from
coarse graining Ãρ . ˜Aρ , however, exhibits nonclassicality and
OTOC time scales (Sec. III). Measuring ˜Aρ can balance the
desire for fundamental knowledge with practicalities.

The weak-measurement scheme for inferring ˜Aρ can be ren-
dered more convenient. Section II A describes measurements
of projectors �. Experimentalists might prefer measuring Pauli
operators σα . Measuring Paulis suffices for inferring a multi-
qubit system’s ˜Aρ : the relevant � projects onto an eigenspace
of a σα . Measuring the σα yields ±1. These possible outcomes
map bijectively onto the possible �-measurement outcomes.
See Footnote 9 for mathematics.

Our weak-measurement and interference schemes offer the
advantage of involving general operators. W and V must be
Hermitian or unitary, not necessarily one or the other. Suppose
that W and V are unitary. Hermitian operators GW and GV

generate W and V , as discussed in Sec. I B. GW and GV may
be measured in place of W and V . This flexibility expands

upon the measurement opportunities of, e.g., [41,42,44], which
require unitary operators.

Our weak-measurement and interference schemes offer
leeway in choosing not onlyW and V , but also ρ. The state can
assume any form ρ ∈ D(H). In contrast, infinite-temperature
Gibbs states ρ = 1/d were used in Refs. [47,48]. Thermality
of ρ is assumed in Ref. [42]. Commutation of ρ with V is
assumed in Ref. [39]. If ρ shares a V eigenbasis or the W(t)
eigenbasis, e.g., if ρ = 1/d, our weak-measurement protocol
simplifies from requiring three sequential weak measurements
to requiring two.

C. Circuit for inferring ˜Aρ from weak measurements

Consider a 1D chain S of N qubits. A circuit implements the
weak-measurement scheme reviewed in Sec. I D 4. We exhibit
a circuit for measuring ˜Aρ . One subcircuit implements each
weak measurement. These subcircuits result from augmenting
Fig. 1 of [117].

Dressel et al. use the partial-projection formalism, which
we review first. We introduce notation, then review the weak-
measurement subcircuit of [117]. Copies of the subcircuit are
embedded into our ˜Aρ-measurement circuit.

1. Partial-projection operators

Partial-projection operators update a state after a measure-
ment that may provide incomplete information. Suppose that S
begins in a state |ψ〉. Consider performing a measurement that
could output + or −. Let �+ and �− denote the projectors onto
the + and − eigenspaces. Parameters p,q ∈ [0,1] quantify
the correlation between the outcome and the premeasurement
state. If |ψ〉 is a+ eigenstate, the measurement has a probability
p of outputting +. If |ψ〉 is a − eigenstate, the measurement
has a probability q of outputting −.

Suppose that outcome + obtains. We update |ψ〉 using the
partial-projection operator D+ := √

p �+ + √
1 − q �−:

|ψ〉 �→ D+|ψ〉
||D+|ψ〉||2 . If the measurement yields −, we update |ψ〉

with D− := √
1 − p �+ + √

q �−.
The measurement is strong if (p,q) = (0,1) or (1,0). D+

and D− reduce to projectors. The measurement collapses |ψ〉
onto an eigenspace. The measurement is weak if p and q lie
close to 1

2 : D± lies close to the normalized identity 1
d

. Such an
operator barely changes the state. The measurement provides
hardly any information.

We modeled measurements with Kraus operators Mx in
Sec. I D 4. The polar decomposition of Mx [118] is a partial-
projection operator. Consider measuring a qubit’s σ z. Recall
that X denotes a detector observable. Suppose that, if an
X measurement yields x, a subsequent measurement of the
spin’s σ z most likely yields +. The Kraus operator Mx =√

p(x) 1 + g(x) �+ updates the system’s state. Mx is related

to D+ by D+ = Ux

√
M

†
xMx for some unitary Ux . The form

of Ux depends on the system-detector coupling and on the
detector-measurement outcome.

The imbalance |p − q| can be tuned experimentally. Our
scheme has no need for a nonzero imbalance. We assume that
p equals q.
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2. Notation

Let σ := σx x̂ + σy ŷ + σ z ẑ denote a vector of one-qubit
Pauli operators. The σ z basis serves as the computational
basis in Ref. [117]. We will exchange the σ z basis with
the W eigenbasis, or with the V eigenbasis, in each
weak-measurement subcircuit.

In our spin-chain example,W and V denote one-qubit Pauli
operators localized on opposite ends of the chain S: W =
σW ⊗ 1⊗(N−1) and V = 1⊗(N−1) ⊗ σV . Unit vectors Ŵ,V̂ ∈
R3 are chosen such that σn := σ · n̂, for n = W,V .

The one-qubit Paulis eigendecompose as σW =
| + W〉〈+W| − | − W〉〈−W| and σV = | + V 〉〈+V | − |
− V 〉〈−V |. The whole-system operators eigendecompose
as W = �W

+ − �W
− and V = �V

+ − �V
−. A rotation

operator Rn maps the σ z eigenstates to the σn eigenstates:
Rn| + z〉 = | + n〉, and Rn| − z〉 = | − n〉.

We model weak W measurements with the partial-
projection operators

DW
+ := √

pW �W
+ +

√
1 − pW �W

− , (54)

DW
− :=

√
1 − pW �W

+ + √
pW �W

− . (55)

The V partial-projection operators are defined analogously:

DV
+ := √

pV �V
+ +

√
1 − pV �V

−, (56)

DV
− :=

√
1 − pV �V

+ + √
pV �V

−. (57)

3. Weak-measurement subcircuit

Figure 3(a) depicts a subcircuit for measuring n = W or V

weakly. To simplify notation, we relabel pn as p. Most of the
subcircuit appears in Fig. 1 of [117]. We set the imbalance
parameter ε to 0. We sandwich Fig. 1 of [117] between
two one-qubit unitaries. The sandwiching interchanges the
computational basis with the n eigenbasis.

The subcircuit implements the following algorithm:
(1) Rotate the n eigenbasis into the σ z eigenbasis, using

R
†
n.
(2) Prepare an ancilla in a fiducial state |0〉 ≡ | + z〉.
(3) Entangle S with the ancilla via a Z-controlled-Y : If S is

in state |0〉, rotate the ancilla’s state counterclockwise (CCW)
through a small angle φ � π

2 about the y axis. Let Ry(φ)
denote the one-qubit unitary that implements this rotation. If S

is in state |1〉, rotate the ancilla’s state CCW through an angle
−φ, with Ry(−φ).

(4) Measure the ancilla’s σ z. If the measurement yields
outcome +, D+ updates the system’s state; and if −, then D−.

(5) Rotate the σ z eigenbasis into the n eigenbasis, using
Rn.

The measurement is weak because φ is small. Rotating
through a small angle precisely can pose challenges [35].

4. Full circuit for weak-measurement scheme

Figure 3(b) shows the circuit for measuring ˜Aρ . The full
circuit contains three weak-measurement subcircuits. Each
ancilla serves in only one subcircuit. No ancilla need remain
coherent throughout the protocol, as discussed in Sec. II B. The

ancilla used in the first V measurement can be recycled for the
final V measurement.

The circuit simplifies in a special case. Suppose thatρ shares
an eigenbasis with V or with W(t), e.g., ρ = 1/d. Only two
weak measurements are needed, as discussed in Sec. I D 4.

We can augment the circuit to measure Ãρ , rather than ˜Aρ :
during each weak measurement, every qubit will be measured.
The qubits can be measured individually: the N -qubit mea-
surement can be a product of local measurements. Consider, for
concreteness, the first weak measurement. Measuring just qubit
N would yield an eigenvalue v1 of V . We would infer whether
qubit N pointed upward or downward along the V̂ axis.
Measuring all the qubits would yield a degeneracy parameter
λv1 . We could define λv	

as the list of the z components of the
other N − 1 qubits’ spins.

D. How to infer ˜Aρ from other OTOC-measurement schemes

F (t) can be inferred, we have seen, from the quasiproba-
bility Ãρ and from the coarse grained ˜Aρ . ˜Aρ can be inferred
from F (t)-measurement schemes, we show, if the eigenvalues
of W and V equal ±1. We assume, throughout this section,
that they do. The eigenvalues equal ±1 if W and V are Pauli
operators.

The projectors (49) and (51) can be expressed as

�W
w	

= 1
2 (1 + w	W) and �V

v	
= 1

2 (1 + v	V ). (58)

Consider substituting from Eqs. (58) into Eq. (52). Multiplying
out yields 16 terms. If 〈. . . 〉 := Tr(. . . , . . .),

˜Aρ(v1,w2,v2,w3)

= 1
16 [1 + (w2 + w3)〈W(t)〉 + (v1 + v2)〈V 〉

+w2w3〈W2(t)〉 + v1v2〈V 2〉 + (w2v1 + w3v1 + w3v2)

×〈W(t)V 〉 + w2v2〈VW(t)〉 + w2w3v1〈W2(t)V 〉
+w3v1v2〈W(t)V 2〉 + w2w3v2〈W(t)VW(t)〉
+w2v1v2〈VW(t)V 〉 + w2w3v1v2 F (t)]. (59)

If W(t) and V are unitary, they square to 1. Equation (59)
simplifies to

˜Aρ(v1,w2,v2,w3)

= 1
16 {(1 + w2w3 + v1v2) + [w2 + w3(1 + v1v2)]〈W(t)〉

+ [v1(1 + w2w3) + v2]〈V 〉
+ (w2v1 + w3v1 + w3v2)〈W(t)V 〉
+w2v2〈VW(t)〉 + w2w3v2〈W(t)VW(t)〉
+w2v1v2〈VW(t)V 〉 + w2w3v1v2 F (t)}. (60)

The first term is constant. The next two terms are single-
observable expectation values. The next two terms are two-
point correlation functions. 〈VW(t)V 〉 and 〈W(t)VW(t)〉 are
time-ordered correlation functions. F (t) is the OTOC. F (t) is
the most difficult to measure. If one can measure it, one likely
has the tools to infer ˜Aρ . One can measure every term, for
example, using the setup in Ref. [41].
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III. NUMERICAL SIMULATIONS

We now study the OTOC quasiprobability’s physical con-
tent in two simple models. In this section, we study a ge-
ometrically local 1D model, an Ising chain with transverse
and longitudinal fields. In Sec. IV, we study a geometrically
nonlocal model known as the Brownian-circuit model. This
model effectively has a time-dependent Hamiltonian.

We compare the physics of ˜Aρ with that of the OTOC.
The time scales inherent in ˜Aρ , as compared to the OTOC’s
time scales, particularly interest us. We study also nonclassical
behaviors, and negative and nonreal values, of ˜Aρ . Finally, we
find a parallel with classical chaos: the onset of scrambling
breaks a symmetry. This breaking manifests in bifurcations of

˜Aρ , reminiscent of pitchfork diagrams.
The Ising chain is defined on a Hilbert space of N spin- 1

2
degrees of freedom. The total Hilbert space has dimensionality
d = 2N . The single-site Pauli matrices are labeled {σx

i ,σ
y

i ,σ z
i },

for i = 1, . . . ,N . The Hamiltonian is

H = −J

N−1∑
i=1

σ z
i σ z

i+1 − h

N∑
i=1

σ z
i − g

N∑
i=1

σx
i . (61)

The chain has open boundary conditions. Energies are mea-
sured in units of J . Times are measured in units of 1/J .
The interaction strength is thus set to one, J = 1, henceforth.
We numerically study this model for N = 10 by exactly
diagonalizing H . This system size suffices for probing the
quasiprobability’s time scales. However, N = 10 does not
necessarily illustrate the thermodynamic limit.

When h = 0, this model is integrable and can be solved
with noninteracting-fermion variables. When h �= 0, the model
appears to be reasonably chaotic. These statements’ meanings
are clarified in the data below. As expected, the quasiprobabil-
ity’s qualitative behavior is sensitive primarily to whether H is
integrable, as well as to the initial state’s form. We study two
sets of parameters:

Integrable: h = 0, g = 1.05 and

Nonintegrable: h = 0.5, g = 1.05 . (62)

We study several classes of initial states ρ, including thermal
states, random pure states, and product states.

For W and V , we choose single-Pauli operators that act
nontrivially on just the chain’s ends. We illustrate withW = σx

1
or W = σ z

1 and V = σx
N or σ z

N . These operators are unitary
and Hermitian. They square to the identity, enabling us to
use Eq. (60). We calculate the coarse-grained quasiprobability
directly:

˜Aρ(v1,w2,v2,w3) = Tr
(
ρ�W(t)

w3
�V

v2
�W(t)

w2
�V

v1

)
. (63)

For a Pauli operator O, �O
a = 1

2 (1 + aO) projects onto the
a ∈ {1, − 1} eigenspace. We also compare the quasiprobability
with the OTOC, Eq. (45).

F (t) deviates from one at roughly the time needed for
information to propagate from one end of the chain to the
other. This onset time, which, up to a constant shift, is
also approximately the scrambling time, lies approximately
between t = 4 and t = 6, according to our the data. The
system’s length and the butterfly velocity vB set the scrambling
time (Sec. I C). Every term in the Hamiltonian (61) is order one.
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FIG. 4. Real (upper curve) and imaginary (lower curve) parts of
F (t) as a function of time. The imaginary curve is nearly indistinguish-
able from the x axis. T = ∞ thermal state. Nonintegrable parameters,
N = 10, W = σ z

1 , V = σ z
N .

Hence, vB is expected to be order one, too. In light of our spin
chain’s length, the data below are all consistent with a vB of
approximately two.

A. Thermal states

We consider first thermal states ρ ∝ e−H/T . Data for the
infinite-temperature (T = ∞) state, with W = σ z

1 , V = σ z
N ,

and nonintegrable parameters, appear in Figures 4–6. The
legend is labeled such that abcd corresponds to w3 = (−1)a ,
v2 = (−1)b, w2 = (−1)c, and v1 = (−1)d . This labeling corre-
sponds to the order in which the operators appear in Eq. (63).

Three behaviors merit comment. Generically, the coarse-
grained quasiprobability is a complex number: ˜Aρ(. . .) ∈ C.
However, ˜A(1/d) is real. The imaginary component Im( ˜A(1/d))
might appear nonzero in Fig. 6. Yet, Im( ˜A(1/d)) � 10−16. This
value equals zero, to within machine precision. The second
feature to notice is that the time required for ˜A(1/d) to deviate
from its initial value equals approximately the time required
for the OTOC to deviate from its initial value. Third, although

˜A(1/d) is real, it is negative and hence nonclassical for some
values of its arguments.

What about lower temperatures? Data for the T = 1 thermal
state are shown in Figs. 7–9. The coarse-grained quasiproba-
bility is no longer real. Here, too, the time required for ˜Aρ

to deviate significantly from its initial value is comparable
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FIG. 5. Real part of ˜Aρ as a function of time. T = ∞ thermal
state. Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N . There

are many degeneracies. The upper curves include 0000 and 1010,
while the top of the lower pitchfork includes 1110 and the bottom of
the lower pitchfork includes 0001.
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FIG. 6. Imaginary part of ˜Aρ as a function of time. T = ∞
thermal state. Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N .

To within machine precision, Im(Ãρ) vanishes for all values of the
arguments.

to the time scale of changes in F (t). This comparability
characterizes the real and imaginary parts of ˜Aρ . Both parts
oscillate at long times. In the small systems considered here,
such oscillations can arise from finite-size effects, includ-
ing the energy spectrum’s discreteness. With nonintegrable
parameters, this model has an energy gap �N=10 = 2.92 above
the ground state. The temperature T = 1 is smaller than the
gap. Hence, lowering T from ∞ to 1 brings the thermal state
close to the ground state.

What about long-time behavior? At infinite temperature,
˜A(1/d) approaches a limiting form after the scrambling time but

before any recurrence time. Furthermore, ˜A(1/d) can approach
one of only a few possible limiting values, depending on the
function’s arguments. This behavior follows from the terms
in Eq. (60). At infinite temperature, 〈W〉 = 〈V 〉 = 0. Also
the three-point functions vanish, due to the trace’s cyclicity.
We expect the nontrivial two- and four-point functions to be
small at late times. (Such smallness is visible in the four-point
function in Fig. 4.) Hence, Eq. (60) reduces as

˜Aρ(v1,w2,v2,w3) −→︸︷︷︸
t→∞

1 + w2w3 + v1v2

16
. (64)

According to Eq. (64), the late-time values of ˜A(1/d) should
cluster around 3

16 , 1
16 , and − 1

16 . This expectation is roughly
consistent with Fig. 5, modulo the upper lines’ bifurcation.

A bifurcation of ˜Aρ signals the breaking of a symmetry
at the onset of scrambling. Similarly, pitchfork plots signal
the breaking of a symmetry in classical chaos [119]. The
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FIG. 7. Real (upper curve) and imaginary (lower curve) parts
of F (t) as a function of time. T = 1 thermal state. Nonintegrable
parameters, N = 10, W = σ z

1 , V = σ z
N .
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FIG. 8. Real part of ˜Aρ as a function of time. T = 1 thermal state.
Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N . The upper

curve includes 0000, the middle curve includes 0011, and the lower
cluster of curves includes 0100.

symmetry’s mathematical form follows from Eq. (60). At early
times, W(t) commutes with V , and F (t) ≈ 1. Suppose, for
simplicity, that ρ = 1/d. The expectation values 〈W(t)〉 and
〈V 〉 vanish because every Pauli has a zero trace. Equation (60)
becomes

˜Aρ(v1,w2,v2,w3) = 1
16 [(1 + w2w3 + v1v2 + w2w3v1v2)

+ (w2 + w3)(v1 + v2)〈W(t)V 〉]. (65)

Suppose that w2 = −w3 and/or v1 = −v2, as in the lower
lines in Fig. 5. ˜Aρ(. . .) reduces to the constant

1
16 (1 + w2w3 + v1v2 + w2w3v1v2)

= 1
32 [(1 + w2w3 + v1v2)2 − (w2w3)2 − (v1v2)2 + 1].

(66)

The right-hand side depends on the eigenvalues w	 and vm

only through squares. ˜Aρ(. . .) remains invariant under the
interchange of w2 with w3, under the interchange of v1 with
v2, under the simultaneous negations of w2 and w3, and under
the simultaneous negations of v1 and v2. These symmetries
have operational significances: Ãρ remains constant under
permutations and negations of measurement outcomes in the
weak-measurement scheme (Sec. I D 4). Symmetries break as
the system starts scrambling: F (t) shrinks, shrinking the final
term in Eq. (66). ˜Aρ starts depending not only on squares of
w	 and vm functions, but also on the eigenvalues individually.

Whereas the shrinking of F (t) bifurcates the lower lines
in Fig. 5, the shrinking does not bifurcate the upper lines. The
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FIG. 9. Imaginary part of ˜Aρ as a function of time. T = 1 thermal
state. Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N . The

various curves display similar looking oscillations as a function of
time; some of the curves are, roughly, interrelated by a factor of −1,
e.g., 1111 and 1110.
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FIG. 10. Real (upper curve) and imaginary (lower curve) parts of
F (t) as a function of time. The imaginary part is nearly indistinguish-
able from the x axis. T = ∞ thermal state. Integrable parameters,
N = 10, W = σ z

1 , V = σ z
N .

reason is that each upper line corresponds tow2w3 = v1v2 = 1.
[At early times, |F (t)| is small enough that any F (t)-dependent
correction would fall within the lines’ widths.] Hence, the final
term in Eq. (65) is proportional to±〈W(t)V 〉. This prediction is
consistent with the observed splitting. The 〈W(t)V 〉 term does
not split the lower lines: each lower line satisfies w2 = −w3

and/or v1 = −v2. Hence, the 〈W(t)V 〉 term vanishes. We leave
as an open question whether these pitchforks can be understood
in terms of equilibria, like classical-chaos pitchforks [119].

In contrast with the T = ∞ data, the T = 1 data oscillate
markedly at late times (after the quasiprobability’s initial sharp
change). We expect these oscillations to decay to zero at
late times, if the system is chaotic, in the thermodynamic
limit. Unlike at infinite temperature, W and V can have
nonzero expectation values. But, if all nontrivial connected
correlation functions have decayed, Eq. (60) still implies a
simple dependence on the w	 and vm parameters at late times.

Finally, Figures 10 and 11 show the coarse-grained
quasiprobability ˜A(1/d) at infinite temperature with integrable
parameters. The imaginary part remains zero, so we do not
show it. The difference from the behavior in Figs. 4 and 5
(which shows T = ∞, nonintegrable-H data) is obvious. Most
dramatic is the large revival that occurs at what would, in the
nonintegrable model, be a late time. Although this is not shown,
the quasiprobability depends significantly on the choice of
operator. This dependence is expected since different Pauli
operators have different degrees of complexity in terms of the
noninteracting-fermion variables.
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FIG. 11. Real part of ˜Aρ as a function of time. T = ∞ thermal
state. Integrable parameters, N = 10, W = σ z

1 , V = σ z
N . The highest

curve includes 0000. Of the curves near the x axis, the upper curve
includes 1110, and the lower includes 0001.
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FIG. 12. Real (upper curve) and imaginary (lower curve) parts
of F (t) as a function of time. Random pure state. Nonintegrable
parameters, N = 10, W = σ z

1 , V = σ z
N .

B. Random states

We now consider random pure states ρ ∝ |ψ〉〈ψ | and
nonintegrable parameters. Figures 12–14 show F (t) and ˜Aρ

for the operator choice W = σ z
1 and V = σ z

N in a random pure
state drawn according to the Haar measure. Each figure shows
a single shot (contains data from just one pure state). Broadly
speaking, the features are similar to those exhibited by the
infinite-temperature ρ = 1/d, with additional fluctuations.

The upper branch of lines in Fig. 13 exhibits dynamics
before the OTOC does. However, lines’ average positions move
significantly (the lower lines bifurcate, and the upper lines shift
downward) only after the OTOC begins to evolve. The early
motion must be associated with the early dynamics of the two-
and three-point functions in Eq. (60). The late-time values are
roughly consistent with those for ρ = 1/d but fluctuate more
pronouncedly.

The agreement between random pure states and the T = ∞
thermal state is expected, due to closed-system thermalization
[120,121]. Consider assigning a temperature to a pure state
by matching its energy density with the energy density of the
thermal state e−H/T /Z, cast as a function of temperature. With
high probability, any given random pure state corresponds
to an infinite temperature. The reason is the thermodynamic
entropy’s monotonic increase with temperature. Since the
thermodynamic entropy gives the density of states, more states
correspond to higher temperatures. Most states correspond to
infinite temperature.
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FIG. 13. Real part of ˜Aρ as a function of time. Random pure
state. Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N . The

upper cluster includes 0000 and 0011. The upper prong of the lower
pitchfork includes 1110; the lower prong includes 1001.
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FIG. 14. Imaginary part of ˜Aρ as a function of time. Random
pure state. Nonintegrable parameters, N = 10, W = σ z

1 , V = σ z
N . A

familiar pattern of oscillations is visible, with some curves being more
or less related by a factor of −1, for example, 0011 and 1000.

For the random states and system sizes N considered, if
H is nonintegrable, the agreement with thermal results is not
complete. However, the physics appears qualitatively similar.

C. Product states

Finally, we consider the product | + x〉⊗N of N copies of the
+1 σx eigenstate (Figs. 15–17). We continue to use W = σ z

1
and V = σ z

N . For the Hamiltonian parameters chosen, this
state lies far from the ground state. The state therefore should
correspond to a large effective temperature. Figures 15–17
show F (t) and ˜Aρ for nonintegrable parameters.

The real part of F (t) decays significantly from its initial
value of one. The imaginary part of F (t) is nonzero but re-
mains small. These features resemble the infinite-temperature
features. However, the late-time F (t) values are substantially
larger than in the T = ∞ case and oscillate significantly.

Correspondingly, the real and imaginary components of
˜Aρ oscillate significantly. Re( ˜Aρ) exhibits dynamics before

scrambling begins, as when ρ is a random pure state. The
real and imaginary parts of ˜Aρ differ more from their T = ∞
counterparts thanF (t) differs from its counterpart. Some of this
differing is apparently washed out by the averaging needed to
construct F (t) [Eq. (45)].

We expected pure product states to behave roughly like
random pure states. The data support this expectation very
roughly, at best. Whether finite-size effects cause this devia-
tion, we leave as a question for further study.
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FIG. 15. Real (upper curve) and imaginary (lower curve) parts of
F (t) as a function of time. Product | + x〉⊗N of N copies of the +1 σ x

eigenstate. Nonintegrable parameters, N = 10, W = σ z
1 , V = σ z

N .
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FIG. 16. Real part of ˜Aρ as a function of time. Product | + x〉⊗N

of N copies of the +1 σ x eigenstate. Nonintegrable parameters, N =
10, W = σ z

1 , V = σ z
N . The top of the upper cluster includes 0101,

while the bottom of the upper cluster includes 0011. The top of the
lower pitchfork includes 1110, while the bottom of the lower pitchfork
includes 1001.

D. Summary

The main messages from this study are the following.
(1) The coarse-grained quasiprobability ˜Aρ is generically

complex. Exceptions include the T = ∞ thermal state 1/d and
states ρ that share an eigenbasis with V or withW(t) [e.g., as in
Eq. (35)]. Recall that the KD distribution’s nonreality signals
nonclassical physics (Sec. I A).

(2) The derived quantity P (W,W ′) is generically complex,
our results imply.11 Nonclassicality thus survives even the
partial marginalization that defines P [Eq. (37)]. In general,
marginalization can cause interference to dampen nonclassi-
cality. (We observe such dampening in Property 6 of Sec. V A
and in Property 9 of Appendix A.)

(3) Random pure states’ quasiprobabilities resemble the
T = ∞ thermal state’s quasiprobability but fluctuate more.

(4) Certain product states’ quasiprobabilities display
anomalously large fluctuations. We expected these states to
resemble random states more.

(5) The ˜Aρ’s generated by integrable Hamiltonians differ
markedly from the ˜Aρ’s generated by nonintegrable Hamilto-
nians. Both types of ˜Aρ’s achieve nonclassical values, however.
We did not clearly observe a third class of behavior.

(6) The time scale after which ˜Aρ changes significantly
is similar to the OTOC time scale. ˜Aρ can display nontrivial
early-time dynamics not visible in F (t). This dynamics can
arise, for example, because of the two-point function contained
in the expansion of ˜Aρ [see Eq. (60)].

(7) ˜Aρ reveals that scrambling breaks a symmetry. Oper-
ationally, the symmetry consists of invariances of ˜Aρ under
permutations and negations of measurement outcomes in
the weak-measurement scheme (Sec. I D 4). The symmetry
breaking manifests in bifurcations of ˜Aρ . These bifurcations
evoke classical-chaos pitchfork diagrams, which also arise
when a symmetry breaks. One equilibrium point splits into

11The relevant plots are not shown, so that this section maintains
a coherent focus on ˜Aρ . This result merits inclusion, however, as
P (W,W ′) plays important roles in (i) [37] and (ii) connections
between the OTOC and quantum thermodynamics (Sec. VI).
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FIG. 17. Imaginary part of ˜Aρ as a function of time. Product
| + x〉⊗N of N copies of the +1 σ x eigenstate. Nonintegrable param-
eters, N = 10, W = σ z

1 , V = σ z
N . Similar physics to other depictions

of the imaginary part.

three in the classical case [119]. Perhaps the quasiprobability’s
pitchforks can be recast in terms of equilibria.

IV. CALCULATION OF ˜Aρ AVERAGED OVER
BROWNIAN CIRCUITS

We study a geometrically nonlocal model, the Brownian-
circuit model, governed by a time-dependent Hamiltonian [71].
We access physics qualitatively different from the physics
displayed in the numerics of Sec. III. We also derive results
for large systems and compare with the finite-size numerics.
Since the two models’ locality properties differ, we do not
expect agreement at early times. The late-time scrambled
states, however, may be expected to share similarities. We
summarize our main findings at the end of the section.

We consider a system of N qubits governed by the random
time-dependent Hamiltonian

H (t) ∝
∑
i<j

∑
αi ,αj

J
αi ,αj

i,j (t) σ
αi

i σ
αj

j . (67)

The couplings J are time-dependent random variables. We
denote the site-i identity operator and Pauli operators by σα

i , for
α = 0,1,2,3. According to the model’s precise formulation, the
time-evolution operator U (t) is a random variable that obeys

U (t + dt) − U (t) = −N

2
U (t)dt − i dB(t). (68)

The final term’s dB(t) has the form

dB(t) =
√

1

8(N − 1)

∑
i<j

∑
αi ,αj

σ
αi

i σ
αj

j dB
αi,αj

i,j (t). (69)

We will sometimes call Eq. (69) “dB.” dB is a Gaussian
random variable with zero mean and with variance

EB

{
dB

α,β

i,j dB
α′,β ′
i ′,j ′

} = δα,α′δβ,β ′δi,i ′δj,j ′ dt. (70)

The expectation value EB is an average over realizations of
the noise B. We demand that dt dt = 0 and dB dt = 0, in
accordance with the standard Ito calculus. dB(t) is independent
of U (t), i.e., of all previous dB’s.

We wish to compute the average, over the ensemble defined
by Eq. (68), of the coarse-grained quasiprobability:

A(v1,w2,v2,w3) = EB{ ˜Aρ(v1,w2,v2,w3)}. (71)

A. Infinite-temperature thermal state 1/2N

We focus here on the infinite-temperature thermal state, ρ =
1/2N , for two reasons. First, a system with a time-dependent
Hamiltonian generically heats to infinite temperature with
respect to any Hamiltonian in the ensemble. Second, the
T = ∞ state is convenient for calculations. A discussion of
other states follows.

The ensemble remains invariant under single-site rotations,
and all qubits are equivalent. Therefore, all possible choices of
single-site Pauli operators for W and V are equivalent. Hence,
we choose W = σ z

1 and V = σ z
2 without loss of generality.

Let us return to Eq. (59). Equation (59) results from
substituting in for the projectors in ˜Aρ . The sum contains 16
terms. To each term, each projector contributes the identity 1
or a nontrivial Pauli (W or V ). The terms are as follows:

(1) 1111: Tr{ 1
2N } = 1,

(2) W111, 1V 11, 11W1, 111V : 0,
(3) WV 11, W11V , 1VW1, 11WV : Tr{ σ z

1 (t)σ z
2

2N } =: G(t),
(4) W1W1, 1V 1V : Tr{ 1

2N } = 1,
(5) WVW1, WV 1V , W1WV , 1VWV : 0,
(6) WVWV : Tr{ σ z

1 (t)σ z
2 σ z

1 (t)σ z
2

2N } = F (t).
These computations rely on ρ = 1/2N . Each term that

contains an odd number of Pauli operators vanishes, due to
the trace’s cyclicality and to the Paulis’ tracelessness. We have
introduced a two-point function G(t). An overall factor of 1

16
comes from the projectors’ normalization.

Combining all the ingredients, we can express ˜Aρ in terms
of G and F . The result is

16 ˜Aρ(v1,w2,v2,w3)

= (1 + w2w3 + v1v2) + (w2 + w3)(v1 + v2) G

+w2w3v1v2 F. (72)

This result depends on ρ = 1/2N , not on the form of the
dynamics. But, to compute A, we must compute

G = EB{G} (73)

and

F = EB{F }. (74)

The computation of F appears in the literature [3]. F

initially equals unity. It decays to zero around t∗ = 1
3 log N ,

the scrambling time. The precise functional form of F is not
crucial. The basic physics is captured in a phenomenological
form inspired by AdS+CFT computations [3]

F ∼
(

1 + c1

1 + c1e3t

)c2

, (75)

wherein c1 ∼ 1/N and c2 ∼ 1.
To convey a sense of the physics, we review the simpler

calculation of G. The two-point function evolves according to

G(t + dt) = 1

2N
Tr

{[
U (t) − N

2
U (t)dt − i dB U (t)

]
σ z

1

×
[
U (t)† − N

2
U (t)†dt + i U (t)†dB†

]
σ z

2

}
.

(76)

042105-20



QUASIPROBABILITY BEHIND THE OUT-OF-TIME- … PHYSICAL REVIEW A 97, 042105 (2018)

Using the usual rules of Ito stochastic calculus, particularly
Eq. (70) and dt dt = dB dt = 0, we obtain

G(t + dt) − G(t)

= −N dt G(t) + dt
1

8(N − 1)

×
∑
i<j

∑
αi ,αj

1

2N
EB

{
Tr
{
σ z

1 (t)σαi

i σ
αj

j σ z
2 σ

αi

i σ
αj

j

}}
. (77)

We have applied the trace’s cyclicality in the second term.
The second term’s value depends on whether i and/or j

equals 2. If i and/or j equals 2, the second term vanishes
because

∑3
α=0 σασ zσα = 0. If neither i nor j is 2, σ

αi

i σ
αj

j

commutes with σ z
2 . The second term becomes proportional to

G. In (N − 1)(N − 2)/2 terms, i,j �= 2. An additional factor of
42 = 16 comes from the two sums over Pauli matrices. Hence,

G(t + dt) − G(t) = −2dt G, (78)

or

dG

dt
= −2G. (79)

This differential equation implies that G exponentially decays
from its initial value. The initial value is zero: G(0) = G(0) =
0. Hence, G(t) is identically zero.

Although it does not arise when we consider A, the
ensemble-average autocorrelation function EB{〈σ z

1 (t)σ z
1 〉}

obeys a differential equation similar to the equation obeyed
by G. In particular, the equation decays exponentially with an
order-one rate.

By the expectation value’s linearity and the vanishing of G,

A = (1 + w2w3 + v1v2) + w2w3v1v2 F

16
. (80)

This simple equation states that the ensemble-averaged
quasiprobability depends only on the ensemble-averaged
OTOC F (t), at infinite temperature. The time scale ofF’s decay
is t∗ = 1

3 log N . Hence this is the time scale of changes in A.
Equation (80) shows (as intuition suggests) that A depends

only on the combinations w2w3 and v1v2. At t = 0, F(0) = 1.
Hence, A is

At=0 = 1 + w2w3 + v1v2 + w2w3v1v2

16
. (81)

The cases are as follows:
(1) w2w3 = 1,v1v2 = 1: A = 1/4,
(2) w2w3 = 1,v1v2 = −1: A = 0,
(3) w2w3 = −1,v1v2 = 1: A = 0,
(4) w2w3 = −1,v1v2 = −1: A = 0.
These values are consistent with Fig. 5 at t = 0. These val-

ues’ degeneracies are consistent with the symmetries discussed
in Sec. III and in Sec. V A (Property 7).

At long times, F(∞) = 0, so A is

At=∞ = 1 + w2w3 + v1v2

16
. (82)

The cases are as follows:
(1) w2w3 = 1,v1v2 = 1: A = 3/16,
(2) w2w3 = 1,v1v2 = −1: A = 1/16,
(3) w2w3 = −1,v1v2 = 1: A = 1/16,

(4) w2w3 = −1,v1v2 = −1: A = −1/16.
Modulo the splitting of the upper two lines, this result

is broadly consistent with the long-time behavior in Fig. 5.
As the models in Sec. III and this section differ, the long-
time behaviors need not agree perfectly. However, the models
appear to achieve qualitatively similar scrambled states at late
times.

B. General state

Consider a general state ρ, such that ˜Aρ assumes the general
form in Eq. (59). We still assume that W = σ z

1 and V = σ z
2 .

However, the results will, in general, now depend on these
choices via the initial condition ρ. We still expect that, at late
times, the results will not depend on the precise choices. Below,
we use the notation 〈. . . 〉 ≡ Tr(ρ . . .).

We must consider 16 terms again. The general case involves
fewer simplifications. The terms are as follows:

(1) 1111: 1,
(2) W111, 1V 11, 11W1, 111V : 〈σ z

1 (t)〉, 〈σ z
2 〉,

(3) WV 11,W11V ,1VW1,11WV : 〈σ z
1 (t) σ z

2 〉, 〈σ z
2 σ z

1 (t)〉,
(4) W1W1, 1V 1V : 1,
(5) WVW1, WV 1V , W1WV , 1VWV : 〈σ z

1 (t) σ z
2 σ z

1 (t)〉,
〈σ z

1 (t) 〉, 〈σ z
2 〉, 〈σ z

2 σ z
1 (t) σ z

2 〉,
(6) WVWV : 〈σ z

1 (t) σ z
2 σ z

1 (t) σ z
2 〉 = F (t).

Consider first the terms of the form qi(t) := EB{〈σ z
i (t)〉}.

The time derivative is
dqi

dt
= −Nqi + 1

8(N − 1)

∑
j<k

∑
αj ,αk

× EB

{〈
σ

αj

j σ
αk

k U (t)σ z
i U (t)†σ

αj

j σ
αk

k

〉}
. (83)

To simplify the second term, we use a trick. Since

σ
αj

j σ
αk

k σ αm

m σαn

n σ
αj

j σ
αk

k = ±σαm

m σαn

n , (84)

we may pass the factors of σ
αj

j σ
αk

k through U (t), at the cost
of changing some Brownian weights. We must consider a
different set of dB’s, related to the originals by minus signs.
This alternative set of Brownian weights has the original set’s
ensemble probability. Hence, the ensemble average gives the
same result. Therefore,

EB

{〈
σ

αj

j σ
αk

k U (t) σ z
i U (t)†σ

αj

j σ
αk

k

〉}
= EB

{〈
U (t)σ

αj

j σ
αk

k σ z
i σ

αj

j σ
αk

k U (t)†
〉}

. (85)

If i = j and/or i = k, the sum over αj and/or the sum over
αk vanishes. If i equals neither j nor k, the Pauli operators
commute. The term reduces to qi . i equals neither j nor k in
(N − 1)(N − 2)/2 terms. A factor of 16 comes from the sums
over αj and αk . Hence,

dqi

dt
= −Nqi + (N − 2)qi = −2qi . (86)

Consider the terms of the form qij (t) := 〈σ z
i (t)σ z

j 〉. Since
〈σ z

j σ z
i (t)〉 = q∗

ij , we may reuse the trick introduced above.
[This trick fails only when more than two copies of U appear,
as in F (t).] To be precise,

EB

{〈
σαm

m σαn

n U (t)σ z
i U (t)†σαm

m σαn

n σ z
j

〉}
= EB

{〈
U (t)σαm

m σαn

n σ z
i σ αm

m σαn

n U (t)†σ z
j

〉}
. (87)
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As before, the sums over α kill the relevant term in the time
derivative of qij , unless i �= m,n. Hence,

dqij

dt
= −2qij , (88)

as at infinite temperature.
Item (5), in the list above, concerns products of three W’s

and V ’s. We must consider four expectation values of Pauli
products. As seen above, two of these terms reduce to qi terms.
By the trick used earlier,

EB

{〈
σ z

2 U (t)σ z
1 U (t)†σ z

2

〉}
= EB

{〈
U (t)σ z

2 σ z
1 σ z

2 U (t)†
〉} = q1(t). (89)

The other term we must consider is EB{〈σ z
i (t)σ z

j σ z
i (t)〉} =: fij .

Our trick will not work because there are multiple copies of
U (t) that are not all simultaneously switched as operators are
moved around. At early times, when σ z

i (t) and σ z
j approxi-

mately commute, this term approximately equals 〈σ z
j 〉 = qj (0).

At later times, including around the scrambling time, this term
decays to zero.

The general expression for A becomes

16A = 1 + w3w2 + v1v2

+ (w3 + w2) q1(t) + (v1 + v2) q2(0)

+ (w3v2 + w3v1 + w2v1) q12(t) + v2w2 q12(t)∗

+w3v2w2 f12(t) + (w3v1v2 + w2v1v2) q1(t)

+w3w2v1 q2(0) + w3w2v1v2 F(t). (90)

All these q functions obey known differential equations. The
functions decay after a time of order one. We do not have
explicit expressions for the f functions that appear, but they are
expected to vary after a time ∼log N .

Special case: σ z
2 eigenstate

In a concrete example, we suppose that ρ is a +1 eigenstate
of σ z

2 . Expressions simplify:

q2(0) = 1, (91)

q12(t) = q1(t) = q12(t)∗, (92)

and

f12 = F. (93)

Hermiticity of the Pauli operators implies that f12 is real. Hence,
the ensemble-averaged OTOCF is real for this choice of ρ. The
ensemble-averaged Ãρ has the form

A = k1 + k2q1 + k3F

16
, (94)

wherein

k1 = (1 + v1)(1 + v2 + w3w2), (95)

k2 = (1 + v1)(w3 + w2)(1 + v2), (96)

and

k3 = (1 + v1)w3v2w2. (97)

Equations (94)–(97) imply that A = 0 unless v1 = 1.
The time scale after which q1 decays is order one. The

time required for F to decay is of order log N (although

not necessarily exactly the same as for the T = ∞ state).
Therefore, the late-time value of A is well approximated by

At�1 = k1 + k3 F

16
. (98)

C. Summary

This study has the following main messages:
(1) In this model, the ensemble-averaged quasiprobability

varies on two time scales. The first time scale is an order-one
relaxation time. At later times, the OTOC controls the physics
entirely. F (t) varies after a time of order log N .

(2) The negative values of ˜Aρ show a nonclassicality
that might not be obvious from F (t) alone. Furthermore, we
computed only the first moment of ˜Aρ . The higher moments
are likely not determined by F (t) alone.

(3) For T = ∞, the late-time physics is qualitatively simi-
lar to the late-time physics of the geometrically local spin chain
in Sec. III.

(4) Nonclassicality, as signaled by negative values of ˜Aρ ,
is extremely robust. It survives the long-time limit and the en-
semble average. One might have expected thermalization and
interference to stamp out nonclassicality. On the other hand,
we expect the circuit average to suppress the imaginary part of

˜Aρ rapidly. We have no controlled examples in which Im( ˜Aρ)
remains nonzero at long times. Finding further evidence for or
against this conjecture remains an open problem.

V. THEORETICAL STUDY OF Ãρ

We have discussed experimental measurements, numer-
ical simulations, and analytical calculations of the OTOC
quasiprobability Ãρ . We now complement these discussions
with mathematical properties and physical interpretations.
First, we define an extended Kirkwood-Dirac distribution
exemplified by Ãρ . We still denote by B(H) the set of bounded
operators defined on H.

Definition 1 (K -extended Kirkwood-Dirac
quasiprobability). Let {|a〉}, . . . ,{|k〉} and {|f 〉} denote
orthonormal bases for the Hilbert space H. Let O ∈ B(H)
denote a bounded operator defined on H. A K -extended
Kirkwood-Dirac quasiprobability for O is defined as12

Ã
(K )
O (a, . . . ,k,f ) := 〈f |k〉〈k| . . . |a〉〈a|O|f 〉. (99)

This quasiprobability can be measured via an extension of
the protocol in Sec. I D 4. Suppose that O denotes a density

12Time evolutions may be incorporated into the bases. For example,
Eq. (15) features the 1-extended KD quasiprobability 〈f ′|a〉〈a|ρ ′|f ′〉.
The ρ ′ := Ut ′ρU

†
t ′ results from time evolving a state ρ. The

|f ′〉 := U
†
t ′′−t ′ |f 〉 results from time evolving an eigenket |f 〉 of

F = ∑
f f |f 〉〈f |. We label (15) as Ã(1)

ρ (ρ,a,f ), rather than as
Ã(1)

ρ (ρ ′,a,f ′). Why? One would measure (15) by preparing ρ, evolv-
ing the system, measuring A weakly, inferring outcome a, evolving
the system, measuring F , and obtaining outcome f . No outcome f ′

is obtained. Our notation is that in Ref. [14] and is consistent with the
notation in Ref. [37].
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matrix. In each trial, one prepares O, weakly measures the
bases sequentially (weakly measures {|a〉}, and so on, until
weakly measuring {|k〉}), then measures |f 〉〈f | strongly.

We will focus mostly on density operators O = ρ ∈ D(H).
One infers Ã(K )

ρ by performing 2K − 1 weak measurements,
and one strong measurement, per trial. The order in which the
bases are measured is the order in which the labels a, . . . ,k,f

appear in the argument of Ã
(K )
O (. . .). The conventional KD

quasiprobability is 1-extended. The OTOC quasiprobability
Ãρ is 3-extended.

Our investigation parallels the exposition, in Sec. I A, of
the KD distribution. First, we present basic mathematical
properties. Ãρ , we show next, obeys an analog of Bayes’
theorem. Our analog generalizes the known analog (5). Our
theorem reduces exponentially (in system size) the memory
needed to compute weak values, in certain cases. Third, we
connect Ãρ with the operator-decomposition argument in
Sec. I A 3. Ãρ consists of coefficients in a decomposition of
an operator ρ ′ that results from asymmetrically decohering
ρ. Summing Ãρ(. . .) values yields a KD representation for
ρ. This sum can be used, in experimental measurements of
Ãρ and the OTOC, to evaluate how accurately the desired
initial state was prepared. Fourth, we explore the relationship
between out-of-time ordering and quasiprobabilities. Time-
ordered correlators are moments of quasiprobabilities that
clearly reduce to classical probabilities. Finally, we generalize
beyond the OTOC, which encodes K = 3 time reversals. Let

¯K := 1
2 (K + 1). A ¯K -fold OTOC F ( ¯K )(t) encodes K time

reversals [122,123]. The quasiprobability behind F ( ¯K )(t), we
find, is K extended.

Recent quasiprobability advances involve out-of-time or-
dering, including in correlation functions [124–128]. Merging
these works with the OTOC framework offers an opportunity
for further research (Sec. VI).

A. Mathematical properties of Ãρ

Ãρ shares some of its properties with the KD quasiprobabil-
ity (Sec. I A 4). Properties of Ãρ imply properties of P (W,W ′),
presented in Appendix A.

Property 5. The OTOC quasiprobability is a map
Ãρ : D(H) × {v1} × {λv1} × {w2} × {αw2} × {v2} × {λv2} ×
{w3} × {αw3}× → C . The domain is a composition of the
set D(H) of density operators defined on H and eight sets of
complex numbers. The range is not necessarily real: C ⊃ R.

Ãρ depends on H and t implicitly through U . The KD
quasiprobability in Ref. [14] depends implicitly on time sim-
ilarly (see Footnote 12). Outside of OTOC contexts, D(H)
may be replaced with B(H). K -extended KD distributions
represent bounded operators, not only quantum states. C, not
necessarily R, is the range also of the K -fold generalization
Ã(K )

ρ . We expound upon the range’s complexity after dis-
cussing the number of arguments of Ãρ .

Five effective arguments of Ãρ . On the left-hand side of
Eq. (33), semicolons separate four tuples. Each tuple results
from a measurement, e.g., of W̃ . We coarse grained over
the degeneracies in Secs. II A–IV. Hence, each tuple often
functions as one DOF. We treat Ãρ as a function of four

arguments (and of ρ). The KD quasiprobability has just two
arguments (apart from O). The need for four arises from the
noncommutation of W(t) and V .

Complexity of Ãρ . The ability of Ãρ to assume nonreal
values mirrors Property 1 of the KD distribution. The Wigner
function, in contrast, is real. The OTOC quasiprobability’s
real component, Re(Ãρ), parallels the Terletsky-Margenau-
Hill distribution. We expect nonclassical values of Ãρ to
reflect nonclassical physics, as nonclassical values of the KD
quasiprobability do (Sec. I A).

Equations (33) and (34) reflect the ability of Ãρ to assume
nonreal values. Equation (33) would equal a real product of
probabilities if the backward-process amplitude A∗

ρ and the
forward-process amplitude Aρ had equal arguments. But, the
arguments typically do not equal each other. Equation (34)
reveals conditions under which Ãρ(. . .) ∈ R and �∈ R. We
illustrate the ∈ case with two examples and the �∈ case with
one example.

Example 1 (Real Ãρ #1: t = 0, shared eigenbasis, arbitrary
ρ). Consider t = 0, at which U = 1. The operators W(t) =
W and V share an eigenbasis, under the assumption that
[W, V ] = 0: {|w	,αw	

〉} = {|v	,λv	
〉}. With respect to that

basis,

Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
= (

δw3v2δαw3 λv2

)(
δv2w2δλv2 αw2

)(
δw2v1δαw2 λv1

)
×

∑
j

pj

∣∣〈w3,αw3

∣∣j 〉∣∣2 ∈ R . (100)

We have substituted into Eq. (34). We substituted in for ρ from
Eq. (25).

Example 1 is consistent with the numerical simulations in
Sec. III. According to Eq. (100), at t = 0,

∑
degeneracies Ãρ =:

˜Aρ ∈ R. In Figs. 9, 14, and 17, the imaginary parts Im( ˜Aρ)
clearly vanish at t = 0. In Fig. 6, Im( ˜Aρ) vanishes to within
machine precision.13

Consider a ρ that lacks coherences relative to the shared
eigenbasis, e.g., ρ = 1/d. Example 1 implies that Im(Ã(1/d))

13The Im( ˜Aρ) in Fig. 6 equals zero identically if w2 = w3 and/or if
v1 = v2. For general arguments,

Im( ˜Aρ(v1,w2,v2,w3))

= 1

2i
[Ãρ(v1,w2,v2,w3) − Ã∗

ρ(v1,w2,v2,w3)]. (101)

The final term equals[
Tr
(
�W(t)

w3
�V

v2
�W(t)

w2
�V

v1

)]∗
= Tr

(
�V

v1
�W(t)

w2
�V

v2
�W(t)

w3

)
(102)

= Tr
(
�W(t)

w2
�V

v2
�W(t)

w3
�V

v1

)
= ˜Aρ(v1,w3,v2,w2). (103)

The first equality follows from projectors’ Hermiticity, and the second
from the trace’s cyclicality. Substituting into Eq. (101) shows that

˜Aρ(. . .) is real if w2 = w3. ˜Aρ(. . .) is real if v1 = v2, by an analogous
argument.
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at t = 0. But, Im(Ã(1/d)) remains zero for all t in the numer-
ical simulations. Why, if time evolution deforms the W(t)
eigenbasis from the V eigenbasis? The reason appears to be a
cancellation, as in Example 2.

Example 2 requires more notation. Let us focus on a chain
of N spin- 1

2 degrees of freedom. Let σα denote the α = x,y,z

Pauli operator. Let |σα,±〉 denote the σα eigenstates, such that
σα|σα,±〉 = ±|σα,±〉. N -fold tensor products are denoted by
|σα,±〉 := |σα,±〉⊗N . We denote by σα

j the αth Pauli operator
that acts nontrivially on site j .

Example 2 (Real Ãρ #2: t = 0, nonshared eigenbases,
ρ = 1/d). Consider the spin chain at t = 0, such that U = 1.
LetW = σ z

1 and V = σ
y

N . TwoW eigenstates are |σ z,±〉. Two

V eigenstates are |σ y,+〉 = [ 1√
2

(|σ z,+〉 + i|σ z,−〉)]⊗N
and

|σ y,−〉 = [ 1√
2

(|σ z,+〉 − i|σ z,−〉)]⊗N
. The overlaps between

the W eigenstates and the V eigenstates are

〈σ z, + |σ y,+〉 =
(

1√
2

)N

,

〈σ z, + |σ y,−〉 =
(

1√
2

)N

,

〈σ z, − |σ y,+〉 =
(

i√
2

)N

,

〈σ z, − |σ y,−〉 =
( −i√

2

)N

. (104)

Suppose that ρ = 1/d. Ã(1/d)(. . .) would have a chance of
being nonreal only if some |v	,λv	

〉 equaled |σ z,−〉. That
|σ z,−〉 would introduce an i into Eq. (34). But, 〈σ z, − |
would introduce another i. The product would be real. Hence,
Ã(1/d)(. . .) ∈ R.

Ãρ is nonreal in the following example.
Example 3 (Nonreal Ãρ: t = 0, nonshared eigenbases, ρ

nondiagonal relative to both). Let t , W , V , {|w	,αw	
〉}, and

{|vm,λvm
〉} be as in Example 2.

Suppose that ρ has coherences relative to the W and
V eigenbases. For instance, let ρ = |σ x,+〉〈σ x, + |. Since
|σx,+〉 = 1√

2
(|σ z,+〉 + |σ z,−〉),

ρ = 1

2N
(|σ z,+〉〈σ z, + | + |σ z,+〉〈σ z, − |

+ |σ z,−〉〈σ z, + | + |σ z,−〉〈σ z, − |)⊗N. (105)

Let |w3,αw3〉 = |σ z,−〉, such that its overlaps with V

eigenstates can contain i’s. The final factor in Eq. (34) becomes

〈
v1,λv1

∣∣ρ∣∣w3,αw3

〉 = 1

2N

[〈
v1,λv1

∣∣(|σ z,+〉⊗N )

+ 〈
v1,λv1

∣∣(|σ z,−〉⊗N )
]
. (106)

The first inner product evaluates to ( 1√
2
)
N

by Eqs. (104). The

second inner product evaluates to (± i√
2
)
N

. Hence,

〈
v1,λv1

∣∣ρ∣∣w3,αw3

〉 = 1

22N
[1 + (±i)N ]. (107)

This expression is nonreal if N is odd.

Example 3, with the discussion after Example 1, shows how
interference can eliminate nonreality from a quasiprobability.
In Example 3, Im(Ãρ) does not necessarily vanish. Hence,
the coarse grained Im( ˜Aρ) does not obviously vanish. But,
Im( ˜Aρ) = 0 according to the discussion after Example 1.
Summing Example 3’s nonzero Im(Ãρ) values must quench the
quasiprobability’s nonreality. This quenching illustrates how
interference can wash out quasiprobabilities’ nonclassicality.
Yet, interference does not always wash out nonclassicality. Sec-
tion III depicts ˜Aρ’s that have nonzero imaginary components
(Figs. 9, 14, and 17).

Example 3 resonates with a finding in Refs. [108,109]. Soli-
nas and Gasparinetti’s quasiprobability assumes nonclassical
values when the initial state has coherences relative to the
energy eigenbasis.

Property 6. Marginalizing Ãρ(. . .) over all its arguments
except any one yields a probability distribution.

Consider, as an example, summing Eq. (34) over every tuple
except (w3,αw3 ). The outer products become resolutions of
unity, e.g.,

∑
(w2,αw2 ) |w2,αw2〉〈w2,αw2 | = 1. A unitary cancels

with its Hermitian conjugate: U †U = 1. The marginalization
yields 〈w3,αw3 |UρU †|w3,αw3〉. This expression equals the
probability that preparing ρ, time evolving, and measuring the
W̃ eigenbasis yields the outcome (w3,αw3 ).

This marginalization property, with the structural and oper-
ational resemblances between Ãρ and the KD quasiprobability,
accounts for our calling Ãρ an extended quasiprobability. The
general K extended Ã(K )

ρ obeys Property 6.
Property 7 (Symmetries of Ã(1/d)). Let ρ be the infinite-

temperature Gibbs state 1/d. The OTOC quasiprobability
Ã(1/d) has the following symmetries.

(A) Ã(1/d)(. . .) remains invariant under the simultaneous
interchanges of (w2,αw2 ) with (w3,αw3 ) and (v1,λv1 )
with (v2,λv2 ): Ã(1/d)(v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3 ) =
Ã(1/d)(v2,λv2 ; w3,αw3 ; v1,λv1 ; w2,αw2 ).

(B) Let t = 0, such that {|w	,αw	
〉} = {|v	,λv	

〉} (under the
assumption that [W,V ] = 0). Ã(1/d)(. . .) remains invariant
under every cyclic permutation of its arguments.

Equation (34) can be recast as a trace. Property 7 follows
from the trace’s cyclicality. Subproperty (B) relies on the
triviality of the t = 0 time-evolution operator: U = 1. The
symmetries lead to degeneracies visible in numerical plots
(Sec. III).

Analogous symmetries characterize a regulated quasiprob-
ability. Maldacena et al. regulated F (t) to facilitate a proof
[6]:14

Freg(t) := Tr(ρ1/4W(t)ρ1/4Vρ1/4W(t)ρ1/4V ). (108)

Freg(t) is expected to behave roughly like F (t) [6,42]. Just
as F (t) equals a moment of a sum over Ãρ , Freg(t) equals a

14The name “regulated” derives from quantum field theory. F (t)
contains operators W†(t) and W(t) defined at the same space-time
point (and operators V † and V defined at the same space-time point).
Products of such operators encode divergences. One can regulate
divergences by shifting one operator to another space-time point. The
inserted ρ1/4 = 1

Z1/4 e−H/4T shifts operators along an imaginary-time
axis.
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moment of a sum over

Ãreg
ρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
:= 〈

w3,αw3

∣∣Uρ1/4
∣∣v2,λv2

〉〈
v2,λv2

∣∣ρ1/4U †∣∣w2,αw2

〉
× 〈

w2,αw2

∣∣Uρ1/4
∣∣v1,λv1

〉〈
v1,λv1

∣∣ρ1/4U †∣∣w3,αw3

〉
(109)

≡ 〈
w3,αw3

∣∣Ũ ∣∣v2,λv2

〉〈
v2,λv2

∣∣Ũ †∣∣w2,αw2

〉
× 〈

w2,αw2

∣∣Ũ ∣∣v1,λv1

〉〈
v1,λv1

∣∣Ũ †∣∣w3,αw3

〉
. (110)

The proof is analogous to the proof of Theorem 1 in Ref. [37].
Equation (110) depends on Ũ := 1

Z
e−iHτ , which propagates

in the complex-time variable τ := t − i
4T

. The Hermitian
conjugate Ũ † = 1

Z
eiHτ ∗

propagates along τ ∗ = t + i
4T

.
Ã

reg
(e−H/T /Z) has the symmetries of Ã(1/d) (Property 7) for

arbitrary T . One might expect Ã
reg
ρ to behave similarly to Ãρ ,

as Freg(t) behaves similarly to F (t). Numerical simulations
largely support this expectation. We compared ˜Aρ(. . .) with

˜A
reg
ρ (. . .) := ∑

degeneracies Ã
reg
ρ (. . .). The distributions vary sig-

nificantly over similar time scales and have similar shapes.
˜A
reg
ρ tends to have a smaller imaginary component and more

degeneracies. The extra degeneracies are consistent with the
greater symmetry of ˜A

reg
ρ .

The properties of Ãρ imply properties of P (W,W ′). We
discuss these properties in Appendix A.

B. Bayes-type theorem and retrodiction with Ãρ

We reviewed, in Sec. I A 2, the KD quasiprobability’s role
in retrodiction. The KD quasiprobability Ã(1)

ρ generalizes the
nontrivial part Re(〈f ′|a〉〈a|ρ ′|f ′〉) of a conditional quasiprob-
ability p̃(a|ρ,f ) used to retrodict about an observableA. Does
Ãρ play a role similar to Ã(1)

ρ ?
It does. To show so, we generalize Sec. I A 2 to com-

posite observables. Let A,B, . . . ,K denote K observables.
K . . .BA might not be Hermitian but can be symmetrized. For
example, � := K . . .A + A . . .K is an observable.15 Which
value is most reasonably attributable to � retrodictively? A
weak value �weak given by Eq. (3). We derive an alternative
expression for �weak. In our expression, � eigenvalues are
weighted by K -extended KD quasiprobabilities. Our expres-
sion reduces exponentially, in the system’s size, the memory
required to calculate weak values, under certain conditions. We
present general theorems about Ã(K )

ρ , then specialize to the
OTOC Ãρ .

Theorem 1 (Retrodiction about composite observables).
Let S denote a system associated with a Hilbert space H.
For concreteness, we assume that H is discrete. Let A =∑

a a|a〉〈a| , . . . ,K = ∑
k k|k〉〈k| denote K observables de-

fined onH. LetUt denote the family of unitaries that propagates
the state of S along time t .

Suppose that S begins in the state ρ at time t = 0, then
evolves under Ut ′′ until t = t ′′. Let F = ∑

f f |f 〉〈f | denote an

15So is �̃ := i(K . . .A − A . . .K). An operator can be symmetrized
in multiple ways. Theorem 1 governs �. Appendix B contains an
analogous result about �̃. Theorem 1 extends trivially to Hermitian
(already symmetrized) instances of K . . .A. Corollary 1 illustrates
this extension.

observable measured at t = t ′′. Let f denote the outcome. Let
t ′ ∈ (0,t ′′) denote an intermediate time. Define ρ ′ := Ut ′ρU

†
t ′

and |f ′〉 := U
†
t ′′−t ′ |f 〉 as time-evolved states.

The value most reasonably attributable retrodictively to the
time-t ′� := K . . .A + A . . .K is the weak value

�weak(ρ,f ) =
∑
a,...,k

(a . . . k)[p̃→(a, . . . ,k|ρ,f )

+ p̃←(k, . . . ,a|ρ,f )]. (111)

The weights are joint conditional quasiprobabilities. They obey
analogs of Bayes’ theorem:

p̃→(a, . . . ,k|ρ,f ) = p̃→(a, . . . ,k,f |ρ)

p(f |ρ)
(112)

≡ Re(〈f ′|k〉〈k| . . . |a〉〈a|ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 , (113)

and

p̃←(k, . . . ,a|ρ,f ) = p̃←(k, . . . ,a,f |ρ)

p(f |ρ)
(114)

≡ Re(〈f ′|a〉〈a| . . . |k〉〈k|ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 . (115)

Complex generalizations of the weights’ numerators,

Ã(K )
ρ,→(a, . . . ,k,f ) := 〈f ′|k〉〈k| . . . |a〉〈a|ρ ′|f ′〉 (116)

and

Ã(K )
ρ,←(k, . . . ,a,f ) := 〈f ′|a〉〈a| . . . |k〉〈k|ρ ′|f ′〉 , (117)

are K -extended KD distributions.
A rightward-pointing arrow → labels quantities in which

the outer products |k〉〈k|, . . . ,|a〉〈a| are ordered analogously to
the first termK . . .A in �. A leftward-pointing arrow ← labels
quantities in which reading the outer products |a〉〈a|, . . . ,|k〉〈k|
backward, from right to left, parallels readingK . . .A forward.

Proof. The initial steps come from [14, Sec. II A], which
recapitulates [73–75]. For every measurement outcome f ,
we assume, some number γf is the guess most reasonably
attributable to �. We combine these best guesses into the
effective observable �est := ∑

f γf |f ′〉〈f ′|. We must optimize
our choice of {γf }. We should quantify the distance between
(1) the operator �est we construct and (2) the operator � we
wish to infer about. We use the weighted trace distance

Dρ ′ (�,�est) = Tr(ρ ′[� − �est]
2). (118)

ρ ′ serves as a “positive prior bias” [14].
Let us substitute in for the form of �est. Expanding the

square, then invoking the trace’s linearity, yields

Dρ ′ (�,�est) = Tr(ρ ′�2) +
∑
f

[
γ 2

f 〈f ′|ρ ′|f ′〉

− γf (〈f ′|ρ ′�|f ′〉 + 〈f ′|�ρ ′|f ′〉)]. (119)

The parenthesized factor equals 2 Re(〈f ′|�ρ ′|f ′〉). Adding
and subtracting

∑
f 〈f ′|ρ ′|f ′〉[Re(〈f ′|�ρ ′|f ′〉)]2 to and from
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Eq. (119), we complete the square:

Dρ ′ (�,�est) = Tr(ρ ′�2) −
∑
f

〈f ′|ρ ′|f ′〉[Re(〈f ′|�ρ ′|f ′〉)]2

+
∑
f

〈f ′|ρ ′|f ′〉
(

γf − Re(〈f ′|�ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉

)2

.

(120)

Our choice of {γf } should minimize the distance (120). We
should set the square to zero:

γf = Re(〈f ′|�ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 . (121)

Now, we deviate from [14,73–75]. We substitute the defini-
tion of � into Eq. (121). Invoking the linearity of Re yields

γf = Re(〈f ′|K . . .Aρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 + Re(〈f ′|A . . .Kρ ′|f ′〉)

〈f ′|ρ ′|f ′〉 .

(122)

We eigendecompose A, . . . ,K. The eigenvalues, being real,
can be factored out of the Re’s. Defining the eigenvalues’
coefficients as in Eqs. (113) and (115), we reduce Eq. (122) to
the form in Eq. (111). �

Theorem 1 reduces exponentially, in system size, the space
required to calculate�weak, in certain cases.16 For concreteness,
we focus on a multiqubit system and on l-local operators
A, . . . ,K. An operator O is l local if O = ∑

j Oj , wherein
each Oj operates nontrivially on, at most, l qubits. Practicality
motivates this focus: the lesser the l, the more easily l-local
operators can be measured.

We use asymptotic notation from computer science: Let
f ≡ f (N ) and g ≡ g(N ) denote any functions of the system
size. If g = O(f ), g grows no more quickly than (is upper
bounded by) a constant multiple of f in the asymptotic limit, as
N → ∞. If g = �(f ), g grows at least as quickly as (is lower
bounded by) a constant multiple of f in the asymptotic limit.
If g = �(f ), g is upper and lower bounded by f : g = O(f ),
and g = �(f ). If g = o(f ), g shrinks strictly more quickly
than f in the asymptotic limit.

Theorem 2 (Weak-value space saver). Let S denote a sys-
tem of N qubits. LetH denote the Hilbert space associated with
S. Let |f ′〉 ∈ H denote a pure state and ρ ′ ∈ D(H) denote a
density operator. Let S denote any fixed orthonormal basis
for H in which each basis element equals a tensor product
of N factors, each of which operates nontrivially on exactly
one site. S may, for example, consist of tensor products of σ z

eigenstates.
Let K denote any polynomial function of N : K ≡

K (N ) = poly(N ). Let A, . . . ,K denote K traceless l-local
observables defined on H, for any constant l. Each observ-
able may, for example, be a tensor product of �l nontrivial
Pauli operators and �N − l identity operators. The composite
observable � := A . . .K + K . . .A is not necessarily l local.
Let A = ∑

a a|a〉〈a| , . . . ,K = ∑
k k|k〉〈k| denote eigenvalue

16“Space” means “memory,” or “number of bits,” here.

decompositions of the local observables. Let OS denote the
matrix that represents an operator O relative to S .

Consider being given the matrices AS , . . . ,KS , ρ ′
S , and

|f ′〉S . From this information, the weak value �weak can be
computed in two ways:

(1) Conventional method
(A) Multiply and sum given matrices to form �S =

KS . . .AS + AS . . .KS .
(B) Compute 〈f ′|ρ ′|f ′〉 = 〈f ′|S ρ ′

S |f ′〉S .

(C) Substitute into �weak = Re( 〈f ′|S �S ρ ′
S |f ′〉S

〈f ′|ρ ′|f ′〉 ).
(2) K -factored method

(A) Compute 〈f ′|ρ ′|f ′〉.
(B) For each nonzero term in Eq. (111).

(i) Calculate p̃→(. . .) and p̃←(. . .) from Eqs. (113)
and (115).

(ii) Substitute into Eq. (111).
Let �(n) denote the space required to compute �weak, aside

from the space required to store �weak, with constant precision,
using method (n) =(1), (2), in the asymptotic limit. Method (1)
requires a number of bits at least exponential in the number K
of local observables:

�1 = �(2K ). (123)

Method (2) requires a number of bits linear in K :

�2 = O(K ). (124)

Method (2) requires exponentially, in K and so in N , less
memory than Method (1).

Proof. Using Method (1), one computes �S . �S is a 2N × 2N

complex matrix. The matrix has �(2K ) nonzero elements:
A, . . . ,K are traceless, so each of AS , . . . ,KS contains at
least two nonzero elements. Each operator at least doubles the
number of nonzero elements in �S . Specifying each complex
number with constant precision requires �(1) bits. Hence,
Method (1) requires �(2K ) bits.

Let us turn to Method (2). We can store 〈f ′|ρ ′|f ′〉 in a
constant number of bits. Step (B) can be implemented with a
counter variable CO for each local operator O, a running-total
variable G, and a “current term” variable T . CO is used to
iterate through the nonzero eigenvalues ofO (arranged in some
fiducial order). O has O(2l) nonzero eigenvalues. Hence, CO
requires O(l) bits. Hence, the set of K counters CO requires
O(lK ) = O(K ) bits.

The following algorithm implements Step (B):
(i) If CK < its maximum possible value, proceed as fol-

lows:
(a) For each O = A, . . . ,K, compute the (2CO )th

nonzero eigenvalue (according to the fiducial ordering).
(b) Multiply the eigenvalues to form a . . . k. Store the

product in T .
(c) For eachO = A, . . . ,K, calculate the (2CO )th eigen-

vector column (according to some fiducial ordering).
(d) Substitute the eigenvector columns into Eqs. (113)

and (115), to compute p̃→(. . .) and p̃←(. . .).
(e) Form (a . . . k)[p̃→(a, . . . ,k|ρ,f ) + p̃←(k, . . . ,

a|ρ,f ). Update T to this value.
(f) Add T to G.
(g) Erase T .
(h) Increment CK.
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(ii) If CK equals its maximum possible value, increment the
counter of the preceding variable J in the list; reset CK to one;
and, if J has not attained its maximum possible value, return
to Step (i). Proceed in this manner, incrementing counters;
then resetting counters, incrementing preceding counters, and
returning to Step (i), until CA reaches its maximum possible
value. Then, halt.

The space needed to store G is the space needed to store
�weak. This space does not contribute to �2. How much
space is needed to store T ? We must calculate �weak with
constant precision. �weak equals a sum of 2lK terms. Let εj

denote the error in term j . The sum
∑2lK

j=1 εj must be O(1).
This requirement is satisfied if 2lK (maxj |εj |) = o(1), which
implies maxj |εj | = o(2−lK ). We can specify each term, with
a small-enough roundoff error, using O(lK ) = O(K ) bits.
Altogether, the variables require O(K ) bits. As the set of
variables does, so does the O-factored method. �

Performing Method (2) requires slightly more time than per-
forming Method (1). Yet, Theorem 2 can benefit computations
about quantum many-body systems. Consider predicting the
outcome of a weak-value experiment. Alternatively, consider
simulating quantum many-body systems independently of
laboratory experiments, as in Sec. III. One must compute weak
values numerically, using large matrices. The memory required
to store these matrices can limit computations. Theorem 2 can
free up space.

Two more aspects of retrodiction deserve exposition: related
studies and the physical significance of K . . .A.

Related studies. Sequential weak measurements have been
proposed [11] and realized recently [32–34]. Lundeen and
Bamber proposed a “direct measurement” of a density operator
[11]. Let ρ denote a density operator defined on a dimension-d
Hilbert space H. Let Sa := {|a	〉} and Sb := {|b	〉} denote
orthonormal mutually unbiased bases (MUBs) for H. The in-
terbasis inner products have constant magnitudes: |〈a	|bm〉| =

1√
d

∀ 	,m. Consider measuring Sa weakly, then Sb weakly,
then Sa strongly, in each of many trials. One can infer (1) a
KD quasiprobability for ρ and, from the quasiprobability, (2)
a matrix that represents ρ relative to Sa [11].

KD quasiprobabilities are inferred from experimental mea-
surements in Refs. [33,34]. Two weak measurements are
performed sequentially also in Ref. [32]. Single photons are
used in Refs. [32,33]. A beam of light is used in Ref. [34]. These
experiments indicate the relevance of Theorem 1 to current ex-
perimental capabilities. Additionally, composite observables
AB + BA accompany KD quasiprobabilities in, e.g., [129].

Physical significance of K . . .A. Rearranging Eq. (111)
offers insight into the result:

�weak(ρ,f ) =
∑
k,...,a

(k . . . a)p̃→(k, . . . ,a|ρ,f )

+
∑
a,...,k

(a . . . k)p̃←(a, . . . ,k|ρ,f ). (125)

Each sum parallels the sum in Eq. (6). Equation (125) sug-
gests that we are retrodicting about K . . .A independently
of A . . .K. But, neither K . . .A nor A . . .K is Hermitian.
Neither operator seems measurable. Ascribing a value to
neither appears to have physical significance, prima facie.

Yet, non-Hermitian products BA have been measured
weakly [32–34]. Weak measurements associate a value with the
supposedly unphysicalK . . .A, just as weak measurements en-
able us to infer supposedly unphysical probability amplitudes
Aρ . The parallel between K . . .A and Aρ can be expanded.
K . . .A and A . . .K, being non-Hermitian, appear to lack
physical significance independently. Summing the operators
forms an observable. Similarly, probability amplitudes Aρ

and A∗
ρ appear to lack physical significance independently.

Multiplying the amplitudes forms a probability. But, Aρ and
K . . .A can be inferred individually from weak measurements.

We have generalized Sec. I A 2. Specializing to k = 3, and
choosing forms for A, . . .K, yields an application of Ãρ to
retrodiction.

Corollary 1 (Retrodictive application of Ãρ). Let S,H, ρ,
W(t), and V be defined as in Sec. I B. Suppose
that S is in state ρ at time t = 0. Suppose that the
observable F = W = ∑

w3,αw3
w3|w3,αw3〉〈w3,αw3 | of

S is measured at time t ′′ = t . Let (w3,αw3 ) denote
the outcome. Let A = V = ∑

v1,λv1
v1|v1,λv1〉〈v1,λv1 |,

B = W(t) = ∑
w2,αw2

w2 U †|w2,αw2〉〈w2,αw2 |U , and
C = V = ∑

v2,λv2
v2|v2,λv2〉〈v2,λv2 | . Let the composite

observable � = ABC = VW(t)V . The value most reasonably
attributable to � retrodictively is the weak value

�weak
(
ρ; w3,αw3

)
=

∑
(v1,λv1 ),(v2,λv2 ),(w2,αw2 )

v1w2v2

× p̃↔
(
v2,λv2 ; w2,αw2 ; v1,λv1

∣∣ρ; w3,αw3

)
. (126)

The weights are joint conditional quasiprobabilities that
obey an analog of Bayes’ theorem:

p̃↔
(
v1,λv1 ; w2,αw2 ; v2,λv2

∣∣ρ; w3,αw3

)
= p̃↔

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

∣∣ρ)
p
(
w3,αw3

∣∣ρ) (127)

≡ Re
(〈
w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣U †∣∣w2,αw2

〉
× 〈

w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣ρU †∣∣w3,αw3

〉)/
〈
w3,αw3

∣∣ρ∣∣w3,αw3

〉
. (128)

A complex generalization of the weight’s numerator is the
OTOC quasiprobability:

Ã(3)
ρ,↔

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
= Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
. (129)

The OTOC quasiprobability, we have shown, assists with
Bayesian-type inference, similarly to the KD distribution.
The inferred-about operator is VW(t)V , rather than the
W(t)VW(t)V in the OTOC. The missing W(t) plays the role
of F . This structure parallels the weak-measurement scheme
in the main text of [37]: V , W(t), and V are measured weakly.
W(t) is, like F , then measured strongly.

C. Ãρ(. . .) values as coefficients in an operator decomposition

Let S denote any orthonormal operator basis for H. Every
state ρ ∈ D(H) can be decomposed in terms of S , as in
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Sec. I A 3. The coefficients form a KD distribution. Does Ãρ

consist of the coefficients in a state decomposition?
Summing Ãρ(. . .) values yields a coefficient in a decom-

position of an operator ρ ′.17ρ ′ results from asymmetrically
“decohering” ρ. This decoherence relates to time-reversal
asymmetry. We expect ρ ′ to tend to converge to ρ after the
scrambling time t∗. By measuring Ãρ after t∗, one may infer
how accurately one prepared the target initial state.

Theorem 3. Let

ρ ′ : = ρ −
∑

(v2,λv2 ),(w3,αw3 ) :
〈w3,αw3 |U |v2,λv2 〉 �= 0

∣∣v2,λv2

〉〈
w3,αw3

∣∣U
× 〈

v2,λv2

∣∣ρU †∣∣w3,αw3

〉
(130)

denote the result of removing, from ρ, the terms that connect
the “input state” U †|w3,αw3〉 to the “output state” |v2,λv2〉. We
define the set

S :=
{∣∣v2,λv2

〉〈
w3,αw3

∣∣U〈
w3,αw3

∣∣U ∣∣v2,λv2

〉
}

〈w3,αw3 |U |v2,λv2 〉�=0

(131)

of trace-one operators. ρ ′ decomposes in terms of S as

∑
(v2,λv2 ),(w3,αw3 ) :

〈w3,αw3 |U |v2,λv2 〉 �= 0

C
(w3,αw3 )
(v2,λv2 )

∣∣v2,λv2

〉〈
w3,αw3

∣∣U〈
w3,αw3

∣∣U ∣∣v2,λv2

〉 . (132)

The coefficients follow from summing values of the OTOC
quasiprobability:

C
(w3,αw3 )
(v2,λv2 ) :=

∑
(w2,αw2 ),
(v1,λv1 )

Ãρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
.

(133)

Proof. We deform the argument in Sec. I A 3. Let
the {|a〉} in Sec. I A 3 be {|v2,λv2〉}. Let the {|f 〉} be
{U †|w3,αw3〉}. We sandwich ρ between resolutions of unity:
ρ = (

∑
a |a〉〈a|)ρ(

∑
f |f 〉〈f |). Rearranging yields

ρ =
∑

(v2,λv2 ),(w3,αw3 )

∣∣v2,λv2

〉〈
w3,αw3

∣∣U
× 〈

v2,λv2

∣∣ρU †∣∣w3,αw3

〉
. (134)

We wish to normalize the outer product, by dividing by
its trace. We assumed, in Sec. I A 3, that no interbasis inner
product vanishes. But, inner products could vanish here. Recall
Example 1: When t = 0,W(t) and V share an eigenbasis. That
eigenbasis can have orthogonal states |ψ〉 and |φ〉. Hence,
〈w3,αw3 |U |v2,λv2〉 can equal 〈ψ |φ〉 = 0. No such term in
Eq. (134) can be normalized.

We eliminate these terms from the sum with the condition
〈w3,αw3 |U |v2,λv2〉 �= 0. The left-hand side of Eq. (134) is
replaced with the ρ ′ in Eq. (130). We divide and multiply by

17This ρ ′ should not be confused with the ρ ′ in Theorem 1.

the trace of each S element:

ρ ′ =
∑

(v2,λv2 ),(w3,αw3 ) :
〈w3,αw3 |U |v2,λv2 〉 �= 0

∣∣v2,λv2

〉〈
w3,αw3

∣∣U〈
w3,αw3

∣∣U ∣∣v2,λv2

〉
× 〈

w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣ρU †∣∣w3,αw3

〉
. (135)

The coefficients are KD-quasiprobability values.
Consider inserting, just leftward of the ρ, the resolution of

unity

1 =
⎛
⎝U †

∑
w2,αw2

∣∣w2,αw2

〉〈
w2,αw2

∣∣U
⎞
⎠

×
⎛
⎝∑

v1,λv1

∣∣v1,λv1

〉〈
v1,λv1

∣∣
⎞
⎠. (136)

In the resulting ρ ′ decomposition, the
∑

w2,αw2

∑
v1,λv1

is pulled

leftward, to just after the
|v2,λv2 〉〈w3,αw3 |U
〈w3,αw3 |U |v2,λv2 〉 . This double sum

becomes a sum of Ãρ’s. The ρ ′ weights have the form in
Eq. (133). �

Theorem 3 would hold if ρ were replaced with any bounded
operator O ∈ B(H). Four more points merit discussion. We
expect that, after the scrambling time t∗, there tend to exist
parametrizations {αw	

} and {λvm
} such that S forms a basis.

(See the next few paragraphs.) Such a tendency could facilitate
error estimates: suppose that Ãρ is measured after t∗. One can
infer the form of the state ρ prepared at the trial’s start. The
target initial state may be difficult to prepare, e.g., thermal.
The preparation procedure’s accuracy can be assessed at a
trivial cost. Third, the physical interpretation of ρ ′ merits
investigation. The asymmetric decoherence relates to time-
reversal asymmetry. Fourth, the sum in Eq. (133) relates to
a sum over trajectories, a marginalization over intermediate-
measurement outcomes.

Relationship between scrambling and completeness of S .
The { |a〉〈f |

〈f |a〉 } in Sec. I A 3 forms a basis for D(H). But, suppose
that ρ ′ �= ρ. S fails to form a basis.

What does this failure imply about W(t) and V ? The
failure is equivalent to the existence of a vanishing ξ :=
|〈w3,αw3 |U |v2,λv2〉|. Some ξ vanishes if some degenerate
eigensubspace H0 of W(t) is a degenerate eigensubspace
of V : every eigenspace of every Hermitian operator has an
orthogonal basis. H0 therefore has an orthogonal basis. One
basis element can be labeled U †|w3,αw3〉; and the other,
|v2,λv2〉.

The sharing of an eigensubspace is equivalent to the com-
mutation of some component ofW(t) with some component of
V . The operators more likely commute before the scrambling
time t∗ than after. Scrambling is therefore expected to magnify
the similarity between the OTOC quasiprobability Ãρ and the
conventional KD distribution.

Let us illustrate with an extreme case. Suppose that all the
ξ ’s lie as far from zero as possible:

ξ = 1√
d

∀ ξ. (137)
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Equation (137) implies that W(t) and V eigenbases are
mutually unbiased biases (MUBs) [130]. MUBs are eigenbases
of operators that maximize the lower bound in an uncertainty
relation [131]. If you prepare any eigenstate of one operator
(e.g., U †|w	,αw	

〉) and measure the other operator (e.g., V ),
all the possible outcomes have equal likelihoods. You have no
information with which to predict the outcome; your ignorance
is maximal. W(t) and V are maximally incompatible, in
the quantum-information (QI) sense of entropic uncertainty
relations. Consistency between this QI sense of “mutually in-
compatible” and the OTOC sense might be expected:W(t) and
V eigenbases might be expected to form MUBs after the scram-
bling time t∗. We elaborate on this possibility in Sec. VI C.

KD quasiprobabilities are typically evaluated on MUBs,
such as position and momentum eigenbases [10,11,34]. One
therefore might expect Ãρ to relate to the initial state’s KD
quasiprobability more closely after t∗ than before. The OTOC
motivates a generalization of KD studies beyond MUBs.

Application: Evaluating a state preparation’s accuracy.
Experimentalists wish to measure the OTOC F (t) at each of
many times t . One may therefore wish to measure Ãρ after t∗.
Upon doing so, one may be able to infer not only F (t), but also
the accuracy with which one prepared the target initial state.

Suppose that, after t∗, some S that forms a basis for H.
Consider summing late-time Ãρ(. . .) values over (w2,αw2 ) and
(v1,λv1 ). The sum equals a KD quasiprobability for ρ. The
quasiprobability encodes all the information in ρ [10,11]. One
can reconstruct the state that one prepared [32–34].

The prepared state ρ might differ from the desired, or target,
state ρtarget. Thermal states e−H/T /Z are difficult to prepare, for
example. The experimenter might benefit from reconstructing
the prepared state’s Ãρ and comparing with ρtarget.

Reconstructing the KD quasiprobability requires a trivial
sum over already-performed measurements [Eq. (133)]. One
could reconstruct ρ independently via conventional quantum-
state tomography [132]. The ρ reconstruction inferred from
Ãρ may have lower precision, due to the multiplicity of weak
measurements and to the sum. But, independent tomography
would likely require extra measurements, exponentially many
in the system size. Inferring Ãρ requires exponentially many
measurements, granted.18 But, from these measurements, one
can infer Ãρ , the OTOC, and ρ. Upon reconstructing the KD
distribution for ρ, one can recover a matrix representation for
ρ via an integral transform [11].

The asymmetrically decohered ρ ′. What does the decom-
posed operator ρ ′ signify? ρ ′ has the following properties: the
term subtracted off in Eq. (130) has trace zero. Hence, ρ ′ has
trace one, like a density operator. But, the subtracted-off term
is not Hermitian. Hence, ρ ′ is not Hermitian, unlike a density
operator. Nor is ρ ′ anti-Hermitian, necessarily unitarity, or
necessarily antiunitary.

18One could measure, instead of Ãρ , the coarse-grained quasiprob-
ability ˜Aρ =:

∑
degeneracies Ãρ (Sec. II A). From ˜Aρ , one could infer

the OTOC. Measuring ˜Aρ would require exponentially fewer mea-
surements. But from ˜Aρ , one could not infer the KD distribution. One
could infer a coarse-grained KD distribution, akin to a block-diagonal
matrix representation for ρ.

ρ ′ plays none of the familiar roles of state, observable,
or time-evolution operator, in quantum theory. The physical
significance of ρ ′ is not clear. Similar quantities appear in
weak-measurement theory: First, non-Hermitian products BA
of observables have been measured weakly (see Sec. V B
and [32–34]). Second, nonsymmetrized correlation functions
characterize quantum detectors of photon absorptions and
emissions [125]. Weak measurements imbue these examples
with physical significance. We might therefore expect ρ ′ to
have physical significance. Additionally, since ρ ′ is non-
Hermitian, non-Hermitian quantum mechanics might offer
insights [133].

The subtraction in Eq. (130) constitutes a removal of co-
herences. But, the subtraction is not equivalent to a decohering
channel [113], which outputs a density operator. Hence our
description of the decoherence as asymmetric.

The asymmetry relates to the breaking time-reversal in-
variance. Let U †|w3,αw3〉 =: |w̃3〉 be fixed throughout the
following argument (be represented, relative to any given basis,
by a fixed list of numbers). Suppose that ρ = e−H/T /Z. The
removal of 〈v2,λv2 |ρ|w̃3〉 terms from ρ is equivalent to the re-
moval of 〈v2,λv2 |H |w̃3〉 terms from H : ρ �→ ρ ′ ⇔ H �→ H ′.
Imagine, temporarily, that H ′ could represent a Hamiltonian
without being Hermitian. H ′ would generate a time evolution
under which |w̃3〉 could not evolve into |v2,λv2〉. But, |v2,λv2〉
could evolve into |w̃3〉. The forward process would be allowed;
the reverse would be forbidden. Hence, ρ �→ ρ ′ relates to a
breaking of time-reversal symmetry.

Interpretation of the sum in Eq. (133). Summing Ãρ(. . .)
values, in Eq. (133), yields a decomposition coefficient C of
ρ ′. Imagine introducing that sum into Eq. (129). The OTOC
quasiprobability Ãρ(. . .) would become a KD quasiprobability.
Consider applying this summed Eq. (129) in Eq. (126). We
would change from retrodicting about VW(t)V to retrodicting
about the leftmost V .

D. Relationship between out-of-time ordering
and quasiprobabilities

The OTOC has been shown to equal a moment of the
complex distribution P (W,W ′) [37]. This equality echoes
Jarzynski’s, which governs out-of-equilibrium statistical me-
chanics [38]. Examples include a quantum oscillator whose
potential is dragged quickly [134]. With such nonequilibrium
systems, one can associate a difficult-to-measure, but useful,
free-energy difference �F . Jarzynski cast �F in terms of
the characteristic function 〈e−βW 〉 of a probability distribution
P (W ).19 Similarly, the difficult-to-measure, but useful, OTOC
F (t) has been cast in terms of the characteristic function
〈e−(βW+β ′W ′)〉 of the summed quasiprobability P (W,W ′) [37].

Jarzynski’s equality casts a free-energy difference �F in
terms of the characteristic function of a probability distribution
P (W ). Similarly, F (t) has been cast in terms of the character-
istic function 〈e−(βW+β ′W ′)〉 of the summed quasiprobability

19Let P (W ) denote a probability distribution over a random variable
W . The characteristic function G(s) equals the Fourier transform:
G(s) := ∫

dW eisW . Defining s as an imaginary-time variable, is ≡
−β, yields 〈e−βW 〉. Jarzynski’s equality reads as 〈e−βW 〉 = e−β�F .
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P (W,W ′). The nonclassical P (W,W ′) replaces the classical
P (W ) due to the noncommutation of W(t) and V . The
OTOC registers quantum-information scrambling unreflected
in time-ordered correlators (TOCs). One might expect TOCs
to equal moments of coarse-grained quasiprobabilities closer
to probabilities than Ãρ is.

We prove this expectation. First, we review the TOC
FTOC(t). Then, we introduce the TOC analog ATOC

ρ of the
probability amplitude Aρ [Eq. (32)]. Aρ encodes no time rever-
sals, as expected. Multiplying a forward amplitude ATOC

ρ by a
backward amplitude (ATOC

ρ )∗ yields the TOC quasiprobability
ÃTOC

ρ . Inferring ÃTOC
ρ requires only two weak measurements

per trial. ÃTOC
ρ reduces to a probability if ρ = ρV [Eq. (35)]. In

contrast, under no known condition on ρ do all Ãρ(. . .) values
reduce to probability values. Summing ÃTOC

ρ under constraints
yields a complex distribution PTOC(W,W ′). The TOC FTOC(t)
equals a moment of PTOC(W,W ′).

1. Time-ordered correlator FTOC(t)

The OTOC equals a term in the expectation value 〈. . . 〉
of the squared magnitude | . . . |2 of a commutator [. . . , . . . .]
[6,30]:

C(t) := 〈[W(t),V ]†[W(t),V ]〉 (138)

= −〈W†(t)V †VW(t)〉
−〈V †W†(t)W(t)V 〉 + 2 Re(F (t)). (139)

The second term is a time-ordered correlator (TOC):

FTOC(t) := 〈V †W†(t)W(t)V 〉. (140)

The first term, 〈W†(t)V †VW(t)〉, exhibits similar physics.
Each term evaluates to one if W and V are unitary. If W and
V are nonunitary Hermitian operators, the TOC reaches its
equilibrium value by the dissipation time td < t∗ (Sec. I C). The
TOC fails to reflect scrambling, which generates the OTOC’s
Lyapunov-type behavior at t ∈ (td , t∗).

2. TOC probability amplitude ATOC
ρ

We define

ATOC
ρ

(
j ; v1,λv1 ; w1,αw1

)
:= 〈

w1,αw1

∣∣U ∣∣v1λv1

〉〈
v1λv1

∣∣j 〉√pj

(141)

as the TOC probability amplitude. ATOC
ρ governs a quantum

process PTOC
A . Figure 18(a), analogous to Fig. 2(a), depicts

PTOC
A , analogous to the PA in Sec. I D 1:
(1) Prepare ρ.
(2) Measure the ρ eigenbasis {|j 〉〈j |}.
(3) Measure Ṽ .
(4) Evolve the system forward in time under U .
(5) Measure W̃ .
Equation (141) represents the probability amplitude associ-

ated with the measurements’ yielding the outcomes j, (v1,λv1 ),
and (w1,αw1 ), in that order. All the measurements are strong.
PTOC

A is not a protocol for measuring ATOC
ρ . Rather, PTOC

A

facilitates the physical interpretation of ATOC
ρ .

0

-t

j

(v1, λv1)

Measure W̃. (w1, αw1)

Prepare
ρ.

Measure
{|j j|}.

Measure Ṽ .

U

Experiment 
time

0

-t

j

Measure W̃. (w1, αw1)

Prepare
ρ.

Measure
{|j j|}.

Measure Ṽ .

U

Experiment 
time

(v2, λv2)

(a)

(b)

FIG. 18. Quantum processes described by the probability ampli-
tudes ATOC

ρ in the time-ordered correlator (TOC)FTOC(t):FTOC(t), like
F (t), equals a moment of a summed quasiprobability (Theorem 4).
The quasiprobability ÃTOC

ρ equals a sum of multiplied probability
amplitudes ATOC

ρ [Eq. (143)]. Each product contains two factors:
ATOC

ρ (j ; v1,λv1 ; w1,αw1 ) denotes the probability amplitude associated
with the “forward” process in (a). The system S is prepared in a state
ρ. The ρ eigenbasis {|j〉〈j |} is measured, yielding outcome j . Ṽ is
measured, yielding outcome (v1,λv1 ). S is evolved forward in time
under the unitary U . W̃ is measured, yielding outcome (w1,αw1 ).
Along the abscissa runs the time measured by a laboratory clock.
Along the ordinate runs the t in U := e−iH t . The second factor in each
ÃTOC

ρ product is ATOC
ρ (j ; v2,λv2 ; w1,αw1 )∗. This factor relates to the

process in (b). The operations are those in (a). The processes’ initial
measurements yield the same outcome. So do the final measurements.
The middle outcomes might differ. Complex conjugating ATOC

ρ yields
the probability amplitude associated with the reverse process. Panels
(a) and (b) depict no time reversals. Each analogous OTOC figure
[Figs. 2(a) and 2(b)] depicts two.

PTOC
A results from eliminating, from PA, the initial U , W̃

measurement, and U †. Aρ encodes two time reversals. ATOC
ρ

encodes none, as one might expect.

3. TOC quasiprobability ÃTOC
ρ

Consider a PTOC
A implementation that yields the outcomes

j , (v2,λv2 ), and (w1,αw1 ). Such an implementation appears
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in Fig. 18(b). The first and last outcomes [j and (w1,αw1 )]
equal those in Fig. 18(a), as in the OTOC case. The middle
outcome can differ. This process corresponds to the probability
amplitude

ATOC
ρ

(
j ; v2,λv2 ; w1,αw1

)
= 〈

w1,αw1

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣j 〉 √pj . (142)

Complex conjugation reverses the inner products, yielding the
reverse process’s amplitude.

We multiply this reverse amplitude by the forward ampli-
tude (141). Summing over j yields the TOC quasiprobability:

ÃTOC
ρ

(
v1,λv1 ; w1,αw1 ; v2,λv2

)
:=

∑
j

ATOC
ρ

(
j ; v2,λv2 ; w1,αw1

)∗
ATOC

ρ

(
j ; v1,λv1 ; w1,αw1

)
(143)

= 〈
v2,λv2

∣∣U †∣∣w1,αw1

〉〈
w1,αw1

∣∣U ∣∣v1,λv1

〉
× 〈

v1,λv1

∣∣ρ∣∣v2,λv2

〉
. (144)

Like Ãρ , ÃTOC
ρ is an extended Kirkwood-Dirac quasiprob-

ability. ÃTOC
ρ is 2-extended, whereas Ãρ is 3-extended. ÃTOC

ρ

can be inferred from a weak-measurement protocol PTOC:
(1) Prepare ρ.
(2) Measure Ṽ weakly.
(3) Evolve the system forward under U .
(4) Measure W̃ weakly.
(5) Evolve the system backward under U †.
(6) Measure Ṽ strongly.
PTOC requires just two weak measurements. The weak-

measurement protocol P for inferring Ãρ requires three. PTOC

requires one time reversal; P requires two.
In a simple case, every ATOC

ρ (. . .) value reduces to a
probability value. Suppose that ρ shares the Ṽ eigenbasis,
as in Eq. (35). The (v2,λv2 ) in Eq. (144) comes to equal
(v1,λv1 ); Figs. 18(a) and 18(b) become identical. Equation
(144) reduces to

ATOC
ρV

(
v1,λv1 ; w1,αw1 ; v2,λv2

)
(145)

= ∣∣〈w1,αw1

∣∣U ∣∣v1,λv1

〉∣∣2 pv1,λv1
δv1v2 δλv1 λv2

(146)

= p
(
w1,αw1

∣∣v1,λv1

)
pv1,λv1

δv1v2 δλv1 λv2
(147)

= p
(
v1,λv1 ; w1,αw1

)
δv1v2 δλv1 λv2

. (148)

The p(a|b) denotes the conditional probability that, if b has
occurred, a will occur. p(a; b) denotes the joint probability
that a and b will occur.

All values ÃTOC
ρV

(. . .) of the TOC quasiprobability have
reduced to probability values. Not all values of ÃρV

reduce:
the values associated with (v2,λv2 ) = (v1,λv1 ) or (w3,αw3 ) =
(w2,αw2 ) reduce to products of probabilities. [See the anal-
ysis around Eq. (36).] The OTOC quasiprobability encodes
nonclassicality (violations of the axioms of probability) more
resilient than the TOC quasiprobability’s.

4. Complex TOC distribution PTOC(WTOC,W ′
TOC)

Let WTOC and W ′
TOC denote random variables analogous

to thermodynamic work. We fix the constraints WTOC = w1v2

and W ′
TOC = w1v1. (w1 and v2 need not be complex conjugated

because they are real, as W and V are Hermitian.) Multi-
ple outcome sextuples (v2,λv2 ; w1,αw1 ; v1,λv1 ) satisfy these
constraints. Each sextuple corresponds to a quasiprobability
ÃTOC

ρ (. . .). We sum the quasiprobabilities that satisfy the
constraints:

PTOC(WTOC,W ′
TOC)

:=
∑

(v1,λv1 ),(w1,αw1 ),(v2,λv2 )

ÃTOC
ρ

×(
v1,λv1 ; w1,αw1 ; v2,λv2

)
δW (w∗

1v∗
2 ) δW ′(w1v1). (149)

PTOC forms a complex distribution. Let f denote any function
of WTOC and W ′

TOC. The PTOC average of f is

〈f (WTOC,W ′
TOC)〉

:=
∑

WTOC,W ′
TOC

f (WTOC,W ′
TOC)PTOC(WTOC,W ′

TOC). (150)

5. TOC as a moment of the complex distribution

The TOC obeys an equality analogous to Eq. (11) in
Ref. [37].

Theorem 4 (Jarzynski-type theorem for the TOC): The time-
ordered correlator (140) equals a moment of the complex
distribution (149):

FTOC(t) = ∂2

∂β ∂β ′ 〈e−(βWTOC+β ′W ′
TOC)〉|β,β ′=0, (151)

wherein β,β ′ ∈ R.
Proof. The proof is analogous to the proof of Theorem 1 in

Ref. [37]. �
Equation (151) can be recast as FTOC(t) = 〈WTOCW ′

TOC〉 ,

along the lines of Eq. (45).

E. Higher-order OTOCs as moments of longer
(summed) quasiprobabilities

Differentiating a characteristic function again and again
yields higher- and higher-point correlation functions. So does
differentiating P (W,W ′) again and again. But, each resulting
correlator encodes just K = 3 time reversals. Let ¯K =
1
2 (K + 1) = 2,3, . . ., for K = 3,5, . . . . A ¯K -fold OTOC has
been defined [122,123]:

F ( ¯K )(t) := 〈W(t)V . . .W(t)V︸ ︷︷ ︸
2 ¯K

〉 ≡ Tr(ρ W(t)V . . .W(t)V︸ ︷︷ ︸
2 ¯K

).

(152)

Each such correlation function contains ¯K Heisenberg-picture
operators W(t) interleaved with ¯K time-0 operators V .
F ( ¯K )(t) encodes 2 ¯K − 1 = K time reversals, illustrated in
Fig. 19. We focus on Hermitian W and V , as in Refs. [6,28],
for simplicity.

The conventional OTOC corresponds to K = 3 and ¯K =
2: F (t) = F (2)(t). If K < 3, F ( ¯K )(t) is not OTO.

The greater the K , the longer the distribution P (K )

of which F ( ¯K )(t) equals a moment. We define P (K ) in
three steps: We recall the K -extended quasiprobability Ã(K )

ρ

[Eq. (99)]. We introduce measurable random variables W	
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0

t

U U† . . .

Experiment 
time

V V V
. . .

. . .
1st time 
reversal

(2     -1)th time 
reversal

W(t) W(t) W(t)

1st W(t)V pair

ρ

th W(t)V pair

FIG. 19. ¯K -fold out-of-time-ordered correlator (OTOC): the
conventional OTOC [Eq. (28)] encodes just three time reversals.
The ¯K -fold OTOC F (K̄ )(t) encodes 2 ¯K − 1 = K = 3,5, . . . time
reversals. The time measured by a laboratory clock runs along
the abscissa. The ordinate represents the time parameter t , which
may be inverted in experiments. The orange, leftmost dot represents
the state preparation ρ. Each green dot represents a W(t) or a V . Each
purple line represents a unitary time evolution. The diagram, scanned
from left to right, represents F (K̄ )(t), scanned from left to right.

and W ′
	′ . These variables participate in constraints on sums

of Ã(K )
ρ (. . .) values.

Let us evaluate Eq. (99) on particular arguments:

Ã(K )
ρ

(
v1,λv1 ; w2,αw2 ; . . . ; v ¯K ,λvK̄

; w ¯K +1,αwK̄ +1

)
= 〈

w ¯K +1,αwK̄ +1

∣∣U ∣∣v ¯K ,λvK̄

〉〈
v ¯K ,λvK̄

∣∣U †∣∣w ¯K ,αwK̄

〉
× · · · × 〈

w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣ρU †∣∣w ¯K +1,αwK̄ +1

〉
.

(153)

One can infer Ã(K )
ρ from the interferometry scheme in

Ref. [37] and from weak measurements. Upon implementing
one batch of the interferometry trials, one can infer Ã(K )

ρ

for all K values: one has measured all the inner products
〈a|U |b〉. Multiplying together arbitrarily many inner products
yields an arbitrarily high-K quasiprobability. Having inferred
some Ã(K )

ρ , one need not perform new experiments to infer
Ã(K +2)

ρ . To infer Ã(K )
ρ from weak measurements, one first

prepares ρ. One performs K = 2 ¯K − 1 weak measurements
interspersed with unitaries. (One measures Ṽ weakly, evolves
with U , measuresW̃ weakly, evolves with U †, etc.) Finally, one
measures W̃ strongly. The strong measurement corresponds to
the anomalous index ¯K + 1 in (w ¯K +1,αwK̄ +1

).
We define 2 ¯K random variables

W	 ∈ {w	} ∀ 	 = 2,3, . . . , ¯K + 1, (154)

W ′
	′ ∈ {v	′ } ∀ 	′ = 1,2, . . . , ¯K . (155)

Consider fixing the values of the W	’s and the W ′
	′’s. Cer-

tain quasiprobability values Ã(K )
ρ (. . .) satisfy the constraints

W	 = w	 and W ′
	′ = v	′ for all 	 and 	′. Summing these

quasiprobability values yields

P (K )(W2,W3, . . . ,W ¯K +1,W
′
1,W

′
2, . . . ,W

′
¯K
)

:=
∑

W2,W3,...,WK̄ +1

∑
W ′

1,W
′
2,...,W

′
K̄

× Ã(K )
ρ

(
v1,λv1 ; w2,αw2 ; . . . ; v ¯K ,λvK̄

; w ¯K +1,αwK̄ +1

)
× (

δW2w2 × · · · × δWK̄ +1wK̄ +1

)(
δW ′

1v1 × · · · × δW ′
K̄

vK̄

)
.

(156)

Theorem 5 (The ¯K -fold OTOC as a moment). The ¯K -fold
OTOC equals a 2 ¯K th moment of the complex distribution
(156):

F ( ¯K )(t) = ∂2 ¯K

∂β2 . . . ∂β ¯K +1 ∂β ′
1 . . . ∂β ′

¯K

×
〈

exp

⎛
⎝−

⎡
⎣ ¯K +1∑

	=2

β	W	 +
¯K∑

	′=1

β ′
	′W

′
	′

⎤
⎦
⎞
⎠〉

∣∣∣∣∣∣
β	,β

′
	′ =0 ∀ 	,	′

,

(157)

wherein β	,β
′
	 ∈ R.

Proof. The proof proceeds in analogy with the proof of
Theorem 1 in Ref. [37]. �

The greater the K , the “longer” the quasiprobability Ã(K )
ρ ,

the more weak measurements are required to infer Ã(K )
ρ .

Differentiating Ã(K )
ρ more does not raise the number of time

reversals encoded in the correlator.
Equation (157) can be recast as F ( ¯K )(t) =

〈(∏ ¯K +1
	=2 W	)(

∏ ¯K
	′=1 W ′

	′)〉, along the lines of Eq. (45).

VI. OUTLOOK

We have characterized the quasiprobability Ãρ that “lies
behind” the OTOC F (t). Ãρ , we have argued, is an extension
of the Kirkwood-Dirac distribution used in quantum optics.
We have analyzed and simplified measurement protocols for
Ãρ , calculated Ãρ numerically and on average over Brownian
circuits, and investigated mathematical properties. This work
redounds upon quantum chaos, quasiprobability theory, and
weak-measurement physics. As the OTOC equals a combina-
tion of Ãρ(.) values, Ãρ provides more fundamental informa-
tion about scrambling. The OTOC motivates generalizations
of, and fundamental questions about, KD theory. The OTOC
also suggests a new application of sequential weak measure-
ments.

At this intersection of fields lie many opportunities. We
classify the opportunities by the tools that inspired them:
experiments, calculations, and abstract theory.

A. Experimental opportunities

We expect the weak-measurement scheme for Ãρ and F (t)
to be realizable in the immediate future. Candidate platforms
include superconducting qubits, trapped ions, ultracold atoms,
and perhaps NMR. Experimentalists have developed key tools
required to implement the protocol [10–13,31–35,50,63].
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B. Opportunities motivated by calculations

Numerical simulations and analytical calculations point to
three opportunities.

Physical models’ OTOC quasiprobabilities may be evalu-
ated. The Sachdev-Ye-Kitaev model, for example, scrambles
quickly [29,30]. The quasiprobability’s functional form may
suggest new insights into chaos. Our Brownian-circuit cal-
culation (Sec. IV), while a first step, involves averages over
unitaries. Summing quasiprobabilities can cause interference
to dampen nonclassical behaviors [14]. Additionally, while
unitary averages model chaotic evolution, explicit Hamiltonian
evolution might provide different insights. Explicit Hamilto-
nian evolution would also preclude the need to calculate higher
moments of the quasiprobability.

In some numerical plots, the real part Re( ˜Aρ) bifurcates.
These bifurcations resemble classical-chaos pitchforks [119].
Classical-chaos plots bifurcate when a differential equation’s
equilibrium point branches into three. The OTOC quasiproba-
bility Ãρ might be recast in terms of equilibria. Such a recasting
would strengthen the parallel between classical chaos and the
OTOC.

Finally, the Brownian-circuit calculation has untied threads.
We calculated only the first moment of ˜Aρ . Higher moments
may encode physics less visible in F (t). Also, evaluating
certain components of ˜Aρ requires new calculational tools.
These tools merit development, then application to ˜Aρ . An
example opportunity is discussed after Eq. (90).

C. Fundamental-theory opportunities

Seven opportunities concern the mathematical properties
and physical interpretations of Ãρ .

The KD quasiprobability prompts the question “Is the
OTOC definition of ‘maximal noncommutation’ consistent
with the mutually-unbiased-bases definition?” Recall Sec. V C:
We decomposed an operator ρ ′ in terms of a set S =
{ |a〉〈f |

〈f |a〉 }〈f |a〉�=0
of operators. In the KD-quasiprobability litera-

ture, the bases Sa = {|a〉} and Sf = {|f 〉} tend to be mutually
unbiased (MU): |〈f |a〉| = 1√

d
∀ a,f . Let A and B denote

operators that have MU eigenbases. Substituting A and B
into an uncertainty relation maximizes the lower bound on
an uncertainty [131]. In this quantum-information (QI) sense,
A and B noncommute maximally.

In Sec. V C, Sa = {|v2,λv2〉} and Sf = {U †|w3,αw3〉}.
These S’s are eigenbases of V and W(t). When do we expect
these eigenbases to be MU, as in the KD-quasiprobability lit-
erature? After the scrambling time t∗, after F (t) decays to zero,
whenW(t) and V noncommute maximally in the OTOC sense.

The OTOC provides one definition of “maximal non-
commutation.” MUBs provide a QI definition. To what ex-
tent do these definitions overlap? Initial results show that,
in some cases, the distribution over possible values of
|〈v2,λv2 |U |w3,αw3〉| peaks at 1√

d
. But, the distribution ap-

proaches this form before t∗. Also, the distribution’s width
seems constant in d. Further study is required. The overlap
between OTOC and two QI definitions of scrambling have
been explored already: (1) When the OTOC is small, a
tripartite information is negative [28]. (2) An OTOC-like
function is proportional to a frame potential that quantifies

pseudorandomness [122]. The relationship between the OTOC
and a third QI sense of incompatibility, MUBs and entropic
uncertainty relations, merits investigation.

Second, Ãρ effectively has four arguments, apart from
ρ (Sec. V A). The KD quasiprobability has two. This dou-
bling of indices parallels the Choi representation of quantum
channels [118]. Hosur et al. have, using the Choi represen-
tation, linked F (t) to the tripartite information [28]. The
extended KD distribution might be linked to information-
theoretic quantities similarly.

Third, our P (W,W ′) and weak-measurement protocol
resemble analogs in Refs. [108,109]. [See [110–112] for
frameworks similar to Solinas and Gasparinetti’s (SG’s).]
Yet, [108,109] concern quantum thermodynamics, not the
OTOC. The similarity between the quasiprobabilities in
Refs. [108,109] and those in Ref. [37], their weak-
measurement protocol and ours, and the thermodynamic agen-
das in Refs. [108,109] and [37] suggest a connection between
the projects [106,107]. The connection merits investigation
and might yield new insights. For instance, SG calculate the
heat dissipated by an open quantum system that absorbs work
[108, Sec. IV]. OTOC theory focuses on closed systems.
Yet, experimental systems are open. Dissipation endangers
measurements of F (t). Solinas and Gasparinetti’s toolkit might
facilitate predictions about, and expose interesting physics in,
open-system OTOCs.

Fourth, W and W ′ suggest understudies for work in quan-
tum thermodynamics. Thermodynamics sprouted during the
1800’s, alongside steam engines and factories. How much
work a system could output (how much “orderly” energy
one could reliably draw) held practical importance. Today’s
experimentalists draw energy from power plants. Quantifying
work may be less critical than it was 150 years ago. What can re-
place work in today’s growing incarnation of thermodynamics,
quantum thermodynamics? Coherence relative to the energy
eigenbasis is being quantified [135,136]. The OTOC suggests
alternatives: W and W ′ are random variables, analogous to
work, natural to quantum-information scrambling. The poten-
tial roles of W and W ′ within quantum thermodynamics merit
exploration.

Fifth, relationships among three ideas were identified re-
cently:

(1) We have linked quasiprobabilities with the OTOC,
following [37].

(2) Aleiner et al. [137] and Haehl et al. [138,139] have
linked the OTOC with Schwinger-Keldysh path integrals.

(3) Hofer has linked Schwinger-Keldysh path integrals
with quasiprobabilities [127].

The three ideas—quasiprobabilities, the OTOC, and
Schwinger-Keldysh path integrals—form the nodes of the
triangle in Fig. 20. The triangle’s legs were discovered
recently; their joinings can be probed further. For example,
Hofer focuses on single-time-fold path integrals. OTOC
path integrals contain multiple time folds [137–139]. Just
as Hofer’s quasiprobabilities involve fewer time folds than
the OTOC quasiprobability Ãρ , the TOC quasiprobability
ÃTOC

ρ (143) can be inferred from fewer weak measurements
than Ãρ can. One might expect Hofer’s quasiprobabilities to
relate to ÃTOC

ρ . Kindred works, linking quasiprobabilities with
out-of-time ordering, include [124–128].
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Yunger Halpern [37]; 
Yunger Halpern, 
Swingle, Dressel
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Haehl et al. [138,139]

FIG. 20. Three interrelated ideas: relationships among the out-of-
time-ordered correlator, quasiprobabilities, and Schwinger-Keldysh
path integrals were articulated recently.

Sixth, the OTOC equals a moment of the complex distri-
bution P (W,W ′) [37]. The OTOC has been bounded with
general-relativity and Lieb-Robinson tools [6,71]. A more
information-theoretic bound might follow from the Jarzynski-
type equality in Ref. [37].

Finally, the KD distribution consists of the coefficients
in a decomposition of a quantum state ρ ∈ D(H) [10,11]
(Sec. I A 3). ρ is decomposed in terms of a set S := { |a〉〈f |

〈f |a〉 }
of operators. S forms a basis for H only if 〈f |a〉 �= 0 ∀ a,f .
The inner product has been nonzero in experiments because
{|a〉} and {|f 〉} are chosen to be mutually unbiased bases
(MUBs): they are eigenbases of “maximally noncommuting”
observables. The OTOC, evaluated before the scrambling
time t = t∗, motivates a generalization beyond MUBs. What
if, F (t) prompts us to ask, 〈f |a〉 = 0 for some a,f (Sec.
V C)? The decomposition comes to be of an “asymmetrically
decohered” ρ ′. This decoherence’s physical significance
merits investigation. The asymmetry appears related to time
irreversibility. Tools from non-Hermitian quantum mechanics
might offer insight [133].
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Ãρ represents a state; M. Rangamani for discussing ¯K -fold
OTOCs; M. Campisi, S. Gazit, J. Goold, J. Jones, L. S. Martin,
O. Painter, and N. Yao for discussing experiments; and C.
D. White and E. Crosson for discussing computational com-
plexity. Parts of this paper were developed while N.Y.H. was
visiting the Stanford ITP and UCL. B.G.S. is supported by the
Simons Foundation, as part of the It From Qubit collaboration;
through a Simons Investigator Award to S. Todadri; and by
MURI Grant No. W911NF-14-1-0003 from ARO. J.D. is
supported by ARO Grant No. W911NF-15-1-0496.

APPENDIX A: MATHEMATICAL PROPERTIES
OF P(W,W ′)

Summing Ãρ , with constraints, yields P (W,W ′) [Eq. (37)].
Hence, properties of Ãρ (Sec. V A) imply properties of
P (W,W ′).

Property 8. P (W,W ′) is a map from a composition of two
sets of complex numbers to the complex numbers: P : {W } ×
{W ′} → C. The range is not necessarily real: C ⊃ R.

Summing quasiprobability values can eliminate nonclas-
sical behavior: interference can reduce quasiprobabilities’
nonreality and negativity. Property 6 consists of an example.
One might expect P (W,W ′), a sum of Ãρ(. . .) values, to be
real. Yet P (W,W ′) is nonreal in many numerical simulations
(Sec. III).

Property 9. Marginalizing P (W,W ′) over one argument
yields a probability if ρ shares the Ṽ eigenbasis or the W̃(t)
eigenbasis.

Consider marginalizing Eq. (37) over W ′. The (w2,αw2 ) and
(v1,λv1 ) sums can be performed explicitly:

P (W ) :=
∑
W ′

P (W,W ′) (A1)

=
∑

(v2,λv2 ),
(w3,αw3 )

〈
w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣ρU †∣∣w3,αw3

〉

× δW (w∗
3v∗

2 ). (A2)

The product of inner products is a Kirkwood-Dirac representa-
tion for ρ. The final expression is not obviously a probability.

But, suppose that ρ shares its eigenbasis with Ṽ or with
W̃(t). Suppose, for example, that ρ has the form in Eq. (35).
Equation (A2) simplifies:

P (W ) =
∑

(v2,λv2 ),
(w3,αw3 )

p
(
v2,λv2 ; w3,αw3

)
δW (w∗

3v∗
2 ). (A3)

The p(v2,λv2 ; w3,αw3 ) := |〈w3,αw3 |U |v2,λv2〉|2 pv2,λv2
de-

notes the joint probability that a Ṽ measurement of ρ yields
(v2,λv2 ) and, after a subsequent evolution under U , a W̃
measurement yields (w3,αw3 ).

Every factor in Eq. (A3) is nonnegative. Summing over W

yields a sum over the arguments of Ãρ(. . .). The latter sum
equals one, by Property 6:

∑
W P (W ) = 1. Hence, P (W ) ∈

[0,1]. Hence, P (W ) behaves as a probability.
We can generalize Property 9 to arbitrary Gibbs states

ρ = e−H/T /Z, using the regulated quasiprobability (110).
The regulated OTOC (108) equals a moment of the complex
distribution

Preg(W,W ′) :=
∑

(v1,λv1 ),(w2,αw2 ),(v2,λv2 )(w3,αw3 )

×Ãreg
ρ

(
v1,λv1 ; w2,αw2 ; v2,λv2 ; w3,αw3

)
×δW (w∗

3v∗
2 ) δW ′(w2v1). (A4)

The proof is analogous to the proof of Theorem 1 in Ref. [37].
Summing over W ′ yields Preg(W ) := ∑

W ′ Preg(W,W ′). We
substitute in from Eq. (A4), then for Ã

reg
ρ from Eq. (110).

We perform the sum over W ′ explicitly, then the sums over
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TABLE II. Correspondence between tuples of composite variables and quadruples of “base”
variables: from each weak-measurement trial, one learns about a quadruple (v1,w2,v2,w3). Suppose
that the out-of-time-ordered-correlator operators W and V have the eigenvalues w	,vm = ±1. For
example, suppose that W and V are Pauli operators. The quadruple’s elements are combined into
W := w∗

3v
∗
2 and W ′ := w2v1. Each (W,W ′) tuple can be formed from each of four quadruples.

(W,W ′) (v1,w2,v2,w3)

(1,1) (1,1,1,1),(1,1,−1,−1),(−1,−1,1,1),(−1,−1,−1,−1)
(1,−1) (−1,1,1,1),(−1,1,−1,−1),(1,−1,1,1),(1,−1,−1,−1)
(−1,1) (1,1,−1,1),(1,1,1,−1),(−1,−1,−1,1),(−1,−1,1,−1)
(−1,−1) (−1,1,−1,1),(−1,1,1,−1),(1,−1,−1,1),(1,−1,1,−1)

(w2,αw2 ) and (v1,λv1 ):

Preg(W ) =
∑

(v2,λv2 )
(w3,αw3 )

∣∣〈w3,αw3

∣∣Ũ ∣∣v2,λv2

〉∣∣2 δW (w∗
3v∗

2 ). (A5)

This expression is real and nonnegative. Preg(W ) sums to one,
as P (W ) does. Hence, Preg(W ) ∈ [0, 1] acts as a probability.

Property 10 (Degeneracy of everyP (W,W ′) associated with
ρ = 1/d and with eigenvalue-(±1) operators W and V ). Let
the eigenvalues of W and V be ±1. For example, let W and V

be Pauli operators. Let ρ = 1/d be the infinite-temperature
Gibbs state. The complex distribution has the degeneracy
P (1,−1) = P (−1,1).

Property 10 follows from (1) Eq. (52) and (2) Property 7 of
Ã(1/d). Item (2) can be replaced with the trace’s cyclicality. We
reason as follows: P (W,W ′) is defined in Eq. (37). Performing
the sums over the degeneracies yields ˜A(1/d). Substituting in
from Eq. (52) yields

P (W,W ′) = 1

d

∑
v1,w2,v2,w3

Tr
(
�W(t)

w3
�V

v2
�W(t)

w2
�V

v1

)
× δW (w∗

3v∗
2 )δW ′(w2v1). (A6)

Consider inferring Ã(1/d) or ˜A(1/d) from weak measure-
ments. From one trial, we infer about four random variables:
v1, w2, v2, and w3. Each variable equals ±1. The quadruple
(v1,w2,v2,w3) therefore assumes one of 16 possible values.
These four “base” variables are multiplied to form the com-
posite variables W and W ′. The tuple (W,W ′) assumes one
of four possible values. Every (W,W ′) value can be formed
from each of four values of (v1,w2,v2,w3). Table II lists the
tuple-quadruple correspondences.

Consider any quadruple associated with (W,W ′) = (1,−1),
e.g., (−1,1,1,1). Consider swapping w2 with w3 and swapping
v1 with v2. The result, e.g., (1,1,−1,1), leads to (W,W ′) =
(−1,1). This double swap amounts to a cyclic permutation of
the quadruple’s elements. This permutation is equivalent to
a cyclic permutation of the argument of the (A6) trace. This

permutation preserves the trace’s value while transforming the
trace into P (−1,1). The trace originally equaled P (1,−1).
Hence, P (1,−1) = P (−1,1).

APPENDIX B: RETRODICTION ABOUT THE
SYMMETRIZED COMPOSITE OBSERVABLE

�̃ := i(K . . .A − A . . .K)

Section V B concerns retrodiction about the symmetrized
observable � := K . . .A + A . . .K. The product K . . .A is
symmetrized also in �̃ := i(K . . .A − A . . .K). One can
retrodict about �̃, using K -extended KD quasiprobabilities
Ã(K )

ρ , similarly to in Theorem 1.
The value most reasonably attributable retrodictively to the

time-t ′ value of �̃ is given by Eqs. (111), (112), and (114).
The conditional quasiprobabilities on the right-hand sides of
Eqs. (113) and (115) become

p̃→(a, . . . ,k,f |ρ) = −Im(〈f ′|k〉〈k| . . . |a〉〈a|ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 (B1)

and

p̃←(k, . . . ,a,f |ρ) = Im(〈f ′|a〉〈a| . . . |k〉〈k|ρ ′|f ′〉)
〈f ′|ρ ′|f ′〉 . (B2)

The extended KD distributions become

Ã(K )
ρ,→(ρ,a, . . . ,k,f ) = i〈f ′|k〉〈k| . . . |a〉〈a|ρ ′|f ′〉 (B3)

and

Ã(K )
ρ,←(ρ,k, . . . ,a,f ) = −i〈f ′|a〉〈a| . . . |k〉〈k|ρ|f ′〉. (B4)

To prove this claim, we repeat the proof of Theorem 1 until
reaching Eq. (122). The definition of �̃ requires that an i enter
the argument of the first Re and that a −i enter the argument
of the second Re. The identity Re(iz) = −Im(z), for z ∈ C,
implies Eqs. (B1)–(B4).

[1] S. H. Shenker and D. Stanford, J. High Energy Phys. 03 (2014)
067.

[2] S. H. Shenker and D. Stanford, J. High Energy Phys. 12 (2014)
046.

[3] S. H. Shenker and D. Stanford, J. High Energy Phys. 05 (2015)
132.

[4] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy
Phys. 03 (2015) 051.

[5] D. A. Roberts and D. Stanford, Phys. Rev. Lett. 115, 131603
(2015).

[6] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy
Phys. 08 (2016) 106.

042105-35

https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106


YUNGER HALPERN, SWINGLE, AND DRESSEL PHYSICAL REVIEW A 97, 042105 (2018)

[7] H. J. Carmichael, Statistical Methods in Quantum Optics I:
Master Equations and Fokker-Planck Equations (Springer,
Berlin, 2002).

[8] J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
[9] P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).

[10] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C.
Bamber, Nature (London) 474, 188 (2011).

[11] J. S. Lundeen and C. Bamber, Phys. Rev. Lett. 108, 070402
(2012).

[12] C. Bamber and J. S. Lundeen, Phys. Rev. Lett. 112, 070405
(2014).

[13] M. Mirhosseini, O. S. Magaña-Loaiza, S. M. Hashemi Raf-
sanjani, and R. W. Boyd, Phys. Rev. Lett. 113, 090402
(2014).

[14] J. Dressel, Phys. Rev. A 91, 032116 (2015).
[15] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008).
[16] C. Ferrie, Rep. Prog. Phys. 74, 116001 (2011).
[17] A. G. Kofman, S. Ashhab, and F. Nori, Phys. Rep. 520, 43

(2012).
[18] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W.

Boyd, Rev. Mod. Phys. 86, 307 (2014).
[19] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Nature

(London) 510, 351 (2014).
[20] N. Delfosse, P. Allard Guerin, J. Bian, and R. Raussendorf,

Phys. Rev. X 5, 021003 (2015).
[21] J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[22] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[23] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.

B 428, 105 (1998).
[24] D. Stanford, J. High Energy Phys. 10 (2016) 009.
[25] A. A. Patel and S. Sachdev, Proc. Natl. Acad. Sci. USA 114,

1844 (2017).
[26] D. Chowdhury and B. Swingle, Phys. Rev. D 96, 065005

(2017).
[27] A. A. Patel, D. Chowdhury, S. Sachdev, and B. Swingle, Phys.

Rev. X 7, 031047 (2017).
[28] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, J. High

Energy Phys. 02 (2016) 004.
[29] S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
[30] A. Kitaev (unpublished).
[31] V. Bollen, Y. M. Sua, and K. F. Lee, Phys. Rev. A 81, 063826

(2010).
[32] Y. Suzuki, M. Iinuma, and H. F. Hofmann, New J. Phys. 18,

103045 (2016).
[33] F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida,

I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi,
F. Zappa, and M. Genovese, Phys. Rev. Lett. 117, 170402
(2016).

[34] G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker,
and J. S. Lundeen, Phys. Rev. Lett. 117, 120401 (2016).

[35] T. C. White et al., npj Quantum Inf. 2, 15022 (2016).
[36] J. P. Groen, D. Riste, L. Tornberg, J. Cramer, P. C. deGroot,

T. Picot, G. Johansson, and L. DiCarlo, Phys. Rev. Lett. 111,
090506 (2013).

[37] N. Yunger Halpern, Phys. Rev. A 95, 012120 (2017).
[38] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[39] M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
[40] N. Tsuji, T. Shitara, and M. Ueda, Phys. Rev. E 97, 012101

(2018).

[41] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302 (2016).

[42] N. Y. Yao et al., arXiv:1607.01801.
[43] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, New J. Phys.

19, 063001 (2017).
[44] G. Zhu, M. Hafezi, and T. Grover, Phys. Rev. A 94, 062329

(2016).
[45] I. Danshita, M. Hanada, and M. Tezuka, Prog. Theor. Exp. Phys.

2017, 083I01 (2017).
[46] N. Tsuji, P. Werner, and M. Ueda, Phys. Rev. A 95, 011601(R)

(2017).
[47] J. Li et al., Phys. Rev. X 7, 031011 (2017).
[48] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.

Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).
[49] K. X. Wei, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett.

120, 070501 (2018).
[50] S. Hacohen-Gourgy et al., Nature (London) 538, 491 (2016).
[51] R. P. Rundle, T. Tilma, J. H. Samson, and M. J. Everitt, Phys.

Rev. A 96, 022117 (2017).
[52] M. Takita, A. D. Corcoles, E. Magesan, B. Abdo, M. Brink, A.

Cross, J. M. Chow, and J. M. Gambetta, Phys. Rev. Lett. 117,
210505 (2016).

[53] J. Kelly et al., Nature (London) 519, 66 (2015).
[54] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.

Devoret, and R. J. Schoelkopf, Nat. Commun. 8, 94 (2017).
[55] D. Ristè et al., Nat. Commun. 6, 6983 (2015).
[56] S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 79,

4790 (1997).
[57] S. K. Choudhary, T. Konrad, and H. Uys, Phys. Rev. A 87,

012131 (2013).
[58] L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547

(1997).
[59] S. Debnath et al., Nature (London) 536, 63 (2016).
[60] T. Monz et al., Science 351, 1068 (2016).
[61] N. M. Linke et al., Sci. Adv. 3, e1701074 (2017).
[62] N. M. Linke et al., Proc. Natl. Acad. Sci. USA 114, 3305

(2017).
[63] A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B: At., Mol.

Opt. Phys. 49, 152001 (2016).
[64] C. Guerlin et al., Nature (London) 448, 889 (2007).
[65] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Nature

(London) 502, 211 (2013).
[66] L. Xiao and J. A. Jones, Phys. Lett. A 359, 424 (2006).
[67] D. Lu, A. Brodutch, J. Li, H. Li, and R. Laflamme, New J. Phys.

16, 053015 (2014).
[68] W. Brown and O. Fawzi, arXiv:1210.6644.
[69] P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007) 120.
[70] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008)

065.
[71] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.

Hayden, J. High Energy Phys. 04 (2013) 022.
[72] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.

60, 1351 (1988).
[73] L. M. Johansen, Phys. Lett. A 329, 184 (2004).
[74] M. J. W. Hall, Phys. Rev. A 64, 052103 (2001).
[75] M. J. W. Hall, Phys. Rev. A 69, 052113 (2004).
[76] L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,

Oxford, England, 1980).
[77] J. Banerji, Contemp. Phys. 48, 157 (2007).

042105-36

https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1038/nature10120
https://doi.org/10.1038/nature10120
https://doi.org/10.1038/nature10120
https://doi.org/10.1038/nature10120
https://doi.org/10.1103/PhysRevLett.108.070402
https://doi.org/10.1103/PhysRevLett.108.070402
https://doi.org/10.1103/PhysRevLett.108.070402
https://doi.org/10.1103/PhysRevLett.108.070402
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1016/j.physrep.2012.07.001
https://doi.org/10.1016/j.physrep.2012.07.001
https://doi.org/10.1016/j.physrep.2012.07.001
https://doi.org/10.1016/j.physrep.2012.07.001
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1103/PhysRevX.7.031047
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevA.81.063826
https://doi.org/10.1103/PhysRevA.81.063826
https://doi.org/10.1103/PhysRevA.81.063826
https://doi.org/10.1103/PhysRevA.81.063826
https://doi.org/10.1088/1367-2630/18/10/103045
https://doi.org/10.1088/1367-2630/18/10/103045
https://doi.org/10.1088/1367-2630/18/10/103045
https://doi.org/10.1088/1367-2630/18/10/103045
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1103/PhysRevLett.117.120401
https://doi.org/10.1103/PhysRevLett.117.120401
https://doi.org/10.1103/PhysRevLett.117.120401
https://doi.org/10.1103/PhysRevLett.117.120401
https://doi.org/10.1038/npjqi.2015.22
https://doi.org/10.1038/npjqi.2015.22
https://doi.org/10.1038/npjqi.2015.22
https://doi.org/10.1038/npjqi.2015.22
https://doi.org/10.1103/PhysRevLett.111.090506
https://doi.org/10.1103/PhysRevLett.111.090506
https://doi.org/10.1103/PhysRevLett.111.090506
https://doi.org/10.1103/PhysRevLett.111.090506
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1103/PhysRevE.97.012101
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
http://arxiv.org/abs/arXiv:1607.01801
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1093/ptep/ptx108
https://doi.org/10.1093/ptep/ptx108
https://doi.org/10.1093/ptep/ptx108
https://doi.org/10.1093/ptep/ptx108
https://doi.org/10.1103/PhysRevA.95.011601
https://doi.org/10.1103/PhysRevA.95.011601
https://doi.org/10.1103/PhysRevA.95.011601
https://doi.org/10.1103/PhysRevA.95.011601
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1038/nature19762
https://doi.org/10.1038/nature19762
https://doi.org/10.1038/nature19762
https://doi.org/10.1038/nature19762
https://doi.org/10.1103/PhysRevA.96.022117
https://doi.org/10.1103/PhysRevA.96.022117
https://doi.org/10.1103/PhysRevA.96.022117
https://doi.org/10.1103/PhysRevA.96.022117
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevA.87.012131
https://doi.org/10.1103/PhysRevA.87.012131
https://doi.org/10.1103/PhysRevA.87.012131
https://doi.org/10.1103/PhysRevA.87.012131
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature06057
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature12539
https://doi.org/10.1016/j.physleta.2006.06.086
https://doi.org/10.1016/j.physleta.2006.06.086
https://doi.org/10.1016/j.physleta.2006.06.086
https://doi.org/10.1016/j.physleta.2006.06.086
https://doi.org/10.1088/1367-2630/16/5/053015
https://doi.org/10.1088/1367-2630/16/5/053015
https://doi.org/10.1088/1367-2630/16/5/053015
https://doi.org/10.1088/1367-2630/16/5/053015
http://arxiv.org/abs/arXiv:1210.6644
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1016/j.physleta.2004.07.003
https://doi.org/10.1016/j.physleta.2004.07.003
https://doi.org/10.1016/j.physleta.2004.07.003
https://doi.org/10.1016/j.physleta.2004.07.003
https://doi.org/10.1103/PhysRevA.64.052103
https://doi.org/10.1103/PhysRevA.64.052103
https://doi.org/10.1103/PhysRevA.64.052103
https://doi.org/10.1103/PhysRevA.64.052103
https://doi.org/10.1103/PhysRevA.69.052113
https://doi.org/10.1103/PhysRevA.69.052113
https://doi.org/10.1103/PhysRevA.69.052113
https://doi.org/10.1103/PhysRevA.69.052113
https://doi.org/10.1080/00107510701666869
https://doi.org/10.1080/00107510701666869
https://doi.org/10.1080/00107510701666869
https://doi.org/10.1080/00107510701666869


QUASIPROBABILITY BEHIND THE OUT-OF-TIME- … PHYSICAL REVIEW A 97, 042105 (2018)

[78] A. Rihaczek, IEEE Trans. Inf. Theory 14, 369 (1968).
[79] L. Cohen, Proc. IEEE 77, 941 (1989).
[80] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett.

66, 1107 (1991).
[81] G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M.

Wiseman, Phys. Rev. Lett. 94, 220405 (2005).
[82] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan,

Phys. Rev. Lett. 106, 040402 (2011).
[83] M. F. Pusey, Phys. Rev. Lett. 113, 200401 (2014).
[84] M. Waegell et al., Phys. Rev. A 96, 052131 (2017).
[85] C. Ferrie and J. Combes, Phys. Rev. Lett. 113, 120404 (2014).
[86] L. Vaidman, arXiv:1409.5386.
[87] E. Cohen, arXiv:1409.8555.
[88] Y. Aharonov and D. Rohrlich, arXiv:1410.0381.
[89] D. Sokolovski, arXiv:1410.0570.
[90] A. Brodutch, Phys. Rev. Lett. 114, 118901 (2015).
[91] C. Ferrie and J. Combes, Phys. Rev. Lett. 114, 118902 (2015).
[92] Y. P. Terletsky, Zh. Eksp. Teor. Fiz. 7, 1290 (1937).
[93] H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 (1961).
[94] L. M. Johansen and A. Luis, Phys. Rev. A 70, 052115 (2004).
[95] H. M. Wiseman, Phys. Rev. A 65, 032111 (2002).
[96] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
[97] C. Emary, N. Lambert, and F. Nori, Rep. Prog. Phys. 77, 016001

(2014).
[98] H. F. Hofmann, New J. Phys. 14, 043031 (2012).
[99] J. Dressel and A. N. Jordan, Phys. Rev. A 85, 012107 (2012).

[100] H. F. Hofmann, Phys. Rev. A 89, 042115 (2014).
[101] H. F. Hofmann, New J. Phys. 16, 063056 (2014).
[102] J. Z. Salvail et al., Nat. Photon. 7, 316 (2013).
[103] M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J.

Padgett, and R. W. Boyd, Nat. Commun. 5, 3115 (2014).
[104] G. A. Howland, D. J. Lum, and J. C. Howell, Opt. Express 22,

18870 (2014).
[105] H. Tasaki, arXiv:cond-mat/0009244.
[106] J. Cotler (private communication).
[107] P. Solinas (private communication).
[108] P. Solinas and S. Gasparinetti, Phys. Rev. E 92, 042150 (2015).
[109] P. Solinas and S. Gasparinetti, Phys. Rev. A 94, 052103 (2016).
[110] J. J. Alonso, E. Lutz, and A. Romito, Phys. Rev. Lett. 116,

080403 (2016).
[111] H. J. D. Miller and J. Anders, New J. Phys. 19, 062001 (2017).
[112] C. Elouard, D. A. Herrera-Martí, M. Clusel, and A. Auffèves,

npj Quantum Inf. 3, 9 (2017).
[113] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[114] J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Springer, Berlin, 1932).

[115] B. Swingle and N. Yunger Halpern, arXiv:1802.01587.
[116] IBM, IBM quantum experience (2016), https://www.research.

ibm.com/ibm-q/.
[117] J. Dressel, T. A. Brun, and A. N. Korotkov, Phys. Rev. A 90,

032302 (2014).
[118] J. Preskill, Foundations of quantum theory II: Measure-

ment and evolution, Lecture Notes for Ph219/CS219: Quan-
tum Information (California Institute of Technology, 2015),
Chap. 3.

[119] S. Strogatz, Non-linear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry and Engineering (Perseus
Books, New York, 2000).

[120] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).

[121] C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001
(2016).

[122] D. A. Roberts and B. Yoshida, J. High Energy Phys. 04 (2017)
121.

[123] F. M. Haehl, R. Loganayagam, P. Narayan, and M. Rangamani,
arXiv:1701.02820.

[124] V. Man’ko and R. V. Mendes, Phys. D (Amsterdam) 145, 330
(2000).

[125] A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys. Rev.
Lett. 110, 250404 (2013).

[126] D. Oehri, A. V. Lebedev, G. B. Lesovik, and G. Blatter,
Phys. Rev. B 93, 045308 (2016).

[127] P. P. Hofer, Quantum 1, 32 (2017).
[128] J. Lee and I. Tsutsui, arXiv:1703.06068.
[129] J. J. Halliwell, Phys. Rev. A 93, 022123 (2016).
[130] T. Durt, B.-G. Englert, I. Bengtsson, and K. Życzkowski,

Int. J. Quantum Inf. 08, 535 (2010).
[131] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner,

Rev. Mod. Phys. 89, 015002 (2017).
[132] Quantum State Estimation, Lecture Notes in Physics Vol. 649,

edited by M. Paris and J. Rehacek (Springer, Berlin, 2004).
[133] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge

University Press, Cambridge, 2011).
[134] S. An et al., Nat. Phys. 11, 193 (2014).
[135] M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun. 6,

6383 (2015).
[136] V. Narasimhachar and G. Gour, Nat. Commun. 6, 7689

(2015).
[137] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Ann. Phys. 375, 378

(2016).
[138] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High

Energy Phys. 06 (2017) 069.
[139] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High

Energy Phys. 06 (2017) 070.

042105-37

https://doi.org/10.1109/TIT.1968.1054157
https://doi.org/10.1109/TIT.1968.1054157
https://doi.org/10.1109/TIT.1968.1054157
https://doi.org/10.1109/TIT.1968.1054157
https://doi.org/10.1109/5.30749
https://doi.org/10.1109/5.30749
https://doi.org/10.1109/5.30749
https://doi.org/10.1109/5.30749
https://doi.org/10.1103/PhysRevLett.66.1107
https://doi.org/10.1103/PhysRevLett.66.1107
https://doi.org/10.1103/PhysRevLett.66.1107
https://doi.org/10.1103/PhysRevLett.66.1107
https://doi.org/10.1103/PhysRevLett.94.220405
https://doi.org/10.1103/PhysRevLett.94.220405
https://doi.org/10.1103/PhysRevLett.94.220405
https://doi.org/10.1103/PhysRevLett.94.220405
https://doi.org/10.1103/PhysRevLett.106.040402
https://doi.org/10.1103/PhysRevLett.106.040402
https://doi.org/10.1103/PhysRevLett.106.040402
https://doi.org/10.1103/PhysRevLett.106.040402
https://doi.org/10.1103/PhysRevLett.113.200401
https://doi.org/10.1103/PhysRevLett.113.200401
https://doi.org/10.1103/PhysRevLett.113.200401
https://doi.org/10.1103/PhysRevLett.113.200401
https://doi.org/10.1103/PhysRevA.96.052131
https://doi.org/10.1103/PhysRevA.96.052131
https://doi.org/10.1103/PhysRevA.96.052131
https://doi.org/10.1103/PhysRevA.96.052131
https://doi.org/10.1103/PhysRevLett.113.120404
https://doi.org/10.1103/PhysRevLett.113.120404
https://doi.org/10.1103/PhysRevLett.113.120404
https://doi.org/10.1103/PhysRevLett.113.120404
http://arxiv.org/abs/arXiv:1409.5386
http://arxiv.org/abs/arXiv:1409.8555
http://arxiv.org/abs/arXiv:1410.0381
http://arxiv.org/abs/arXiv:1410.0570
https://doi.org/10.1103/PhysRevLett.114.118901
https://doi.org/10.1103/PhysRevLett.114.118901
https://doi.org/10.1103/PhysRevLett.114.118901
https://doi.org/10.1103/PhysRevLett.114.118901
https://doi.org/10.1103/PhysRevLett.114.118902
https://doi.org/10.1103/PhysRevLett.114.118902
https://doi.org/10.1103/PhysRevLett.114.118902
https://doi.org/10.1103/PhysRevLett.114.118902
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1103/PhysRevA.70.052115
https://doi.org/10.1103/PhysRevA.70.052115
https://doi.org/10.1103/PhysRevA.70.052115
https://doi.org/10.1103/PhysRevA.70.052115
https://doi.org/10.1103/PhysRevA.65.032111
https://doi.org/10.1103/PhysRevA.65.032111
https://doi.org/10.1103/PhysRevA.65.032111
https://doi.org/10.1103/PhysRevA.65.032111
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/1367-2630/14/4/043031
https://doi.org/10.1088/1367-2630/14/4/043031
https://doi.org/10.1088/1367-2630/14/4/043031
https://doi.org/10.1088/1367-2630/14/4/043031
https://doi.org/10.1103/PhysRevA.85.012107
https://doi.org/10.1103/PhysRevA.85.012107
https://doi.org/10.1103/PhysRevA.85.012107
https://doi.org/10.1103/PhysRevA.85.012107
https://doi.org/10.1103/PhysRevA.89.042115
https://doi.org/10.1103/PhysRevA.89.042115
https://doi.org/10.1103/PhysRevA.89.042115
https://doi.org/10.1103/PhysRevA.89.042115
https://doi.org/10.1088/1367-2630/16/6/063056
https://doi.org/10.1088/1367-2630/16/6/063056
https://doi.org/10.1088/1367-2630/16/6/063056
https://doi.org/10.1088/1367-2630/16/6/063056
https://doi.org/10.1038/nphoton.2013.24
https://doi.org/10.1038/nphoton.2013.24
https://doi.org/10.1038/nphoton.2013.24
https://doi.org/10.1038/nphoton.2013.24
https://doi.org/10.1038/ncomms4115
https://doi.org/10.1038/ncomms4115
https://doi.org/10.1038/ncomms4115
https://doi.org/10.1038/ncomms4115
https://doi.org/10.1364/OE.22.018870
https://doi.org/10.1364/OE.22.018870
https://doi.org/10.1364/OE.22.018870
https://doi.org/10.1364/OE.22.018870
http://arxiv.org/abs/arXiv:cond-mat/0009244
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevA.94.052103
https://doi.org/10.1103/PhysRevA.94.052103
https://doi.org/10.1103/PhysRevA.94.052103
https://doi.org/10.1103/PhysRevA.94.052103
https://doi.org/10.1103/PhysRevLett.116.080403
https://doi.org/10.1103/PhysRevLett.116.080403
https://doi.org/10.1103/PhysRevLett.116.080403
https://doi.org/10.1103/PhysRevLett.116.080403
https://doi.org/10.1088/1367-2630/aa703f
https://doi.org/10.1088/1367-2630/aa703f
https://doi.org/10.1088/1367-2630/aa703f
https://doi.org/10.1088/1367-2630/aa703f
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1038/s41534-017-0008-4
http://arxiv.org/abs/arXiv:1802.01587
https://www.research.ibm.com/ibm-q/
https://doi.org/10.1103/PhysRevA.90.032302
https://doi.org/10.1103/PhysRevA.90.032302
https://doi.org/10.1103/PhysRevA.90.032302
https://doi.org/10.1103/PhysRevA.90.032302
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
http://arxiv.org/abs/arXiv:1701.02820
https://doi.org/10.1016/S0167-2789(00)00117-2
https://doi.org/10.1016/S0167-2789(00)00117-2
https://doi.org/10.1016/S0167-2789(00)00117-2
https://doi.org/10.1016/S0167-2789(00)00117-2
https://doi.org/10.1103/PhysRevLett.110.250404
https://doi.org/10.1103/PhysRevLett.110.250404
https://doi.org/10.1103/PhysRevLett.110.250404
https://doi.org/10.1103/PhysRevLett.110.250404
https://doi.org/10.1103/PhysRevB.93.045308
https://doi.org/10.1103/PhysRevB.93.045308
https://doi.org/10.1103/PhysRevB.93.045308
https://doi.org/10.1103/PhysRevB.93.045308
https://doi.org/10.22331/q-2017-10-12-32
https://doi.org/10.22331/q-2017-10-12-32
https://doi.org/10.22331/q-2017-10-12-32
https://doi.org/10.22331/q-2017-10-12-32
http://arxiv.org/abs/arXiv:1703.06068
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1103/PhysRevA.93.022123
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1038/nphys3197
https://doi.org/10.1038/nphys3197
https://doi.org/10.1038/nphys3197
https://doi.org/10.1038/nphys3197
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1038/ncomms8689
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1007/JHEP06(2017)069
https://doi.org/10.1007/JHEP06(2017)069
https://doi.org/10.1007/JHEP06(2017)069
https://doi.org/10.1007/JHEP06(2017)069
https://doi.org/10.1007/JHEP06(2017)070
https://doi.org/10.1007/JHEP06(2017)070
https://doi.org/10.1007/JHEP06(2017)070
https://doi.org/10.1007/JHEP06(2017)070



